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Abstract-There exist two pertinent heat transfer modes in a fluidized bed : one-convective heat transfer 
between points of the bed, caused by particles’ mixing; and the other-surface heat transfer between 
particles and fluid. The two modes produce an effective heat conduction, or diffusion, in the fluidized bed. 
In order to predict the temperatures in the fluidized bed, the knowledge of the effective thermal diffusivity 
is necessary. The achieved objectives of the present research are: (a) theoretical explanation of the heat 
transfer; (b) experimental determination of the said diffusivity. 

The work is divided into two main parts, experimental and theoretical. In the experimental part, the 
effective thermal diffuiivity values are obtained by means of a fluid&d bed test apparatus. The obtained 
values fit the semi-empirical correlation developed later in our theoretical analysis 

_ = c, p~c. Re*0’25 %ff 
v f p,c, . TP= 

where Re* is a Reynolds number based on the particle’s diameter and the root mean square fluctuation 
velocity defined by equation 

C is a proportionality factor. By plotting the test data it is found that C = 5320. The test data fit the above 
equation with a standard deviation + 34 per cent. 

In the theoretical part of work, an analysis of the heat transfer caused by particle mixing is performed 
by means of the theory of stochastic processes. It is shown that with certain simplifying assumptions the 
heat transfer process becomes a Wiener process. From the theory of Wiener processes it is found that the 
effective thermal diffisivity of fluidized bed is a function of the mean kinetic energy of particle and the 
heat-transfer coefficient. To complete the analysis, the expressions of the mean kinetic energy of particle 
and the heat transfer coefficient are developed. Both expressions in conjunction with the theory of Wiener 

processes produce the semi-empirical correlation shown above. 

NOMENCLATURE 

particle surface ; 
constant ; 
constant ; 
empirical constant ; 
specific heat : 

cD, drag coeffkient ; 

t This research was carried out under the supervision of 
Prof. A. Kogan at the Department of Aeronautical engineer- 
ing, Technion-Is&l Institute of Technology, in a partial 
fnlfilment for the D.Bc degree. 

1 Present address: University of the Negev, Beer-Sheva, 
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835 

D, 

G, 
9, 
H, 
h, 
j, 

column diameter; drag in equation 
(75); 
particle diameter ; 
energy of particle ; 
stochastic function ; 
function ; friction factor in equation 

(53) ; 
flow rate ; 
gravity constant ; 
holdup ; 
heat-transfer coefficient ; 
Colburn factor ; 
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K, 

k 

L, 

I, 

m, 

N, 

P, 

P. 

S, 

7: 
t. 
u. 
u, 
T/ 

w 
X. 
.? 

stochastic function ; 
thermal conductivity: constant in 
equation (8) ; 
length of test tube ; 
length ; constant in equation (8) : 
mass of particle : 
number ofparticles ; 
force : 
probability function ; pressure in 
equations (76) (78); 
sum of squares ; stochastic function 
in equation (6) ; 
temperature : 
time : 
velocity in Lagrangian system : 
velocity ; 
volume of particle: V, volume of 
fluidized bed : 
weight : 
coordinate in Lagrangian system ; 
coordinate. 

Greek symbols 
% friction factor ; 

Y> factor defined by equation (64) ; 
6, dissipation length ; 6, Kolmogorov’s 

microscale : 
E. void fraction : 

K, thermal diffusivity : 

V, kinematic viscosity : 

P, density : 

0, specific particle surface : 

4. stochastic function : function in equa- 
tion(1): 

X. diffusivity. 

Dimensionless groups 
NU, Nusselt number : 

Pr, Prandtl number : 
RP. Reynolds number. 

Subscripts 
a, solids in hopper 1 : 
B, fluidized bed : 
eff. effective : 

.f fluid : 
i. space direction : 

j. space direction : 
L, location x = L: 
m. molecular: 
s. solid : 

i: 
test reading ; 
location Y = 0; 

slip velocity (uO only) ; 
1,2,3, space directions ; locations. 

Other symbols 
(overbar) mean ; 

-3 superficial : 
(prime) derivative ; fluctuation ( T’ 
and u’ only) : 

* (asterisk) as defined in equation (89). 
Bold symbols indentify vectors. 

1. INTRODUCTION 

FLUIDIZED beds by their very nature make ideal 
heat exchangers. They possess large heat-transfer 
area, high heat exchange effectiveness, and a 
simple design which keeps the construction 
costs low. All of this enhances the application of 
fluidized beds in heat exchange processes of the 
chemical industry and make the fluidized beds 
a technological success. Now the fluidized beds 
are looked upon as a possible solution to the 
problem of heat recovery in flash distillation 
plants. The first attempts in this direction were 
restricted to the liquid-liquid fluidized bed heat 
exchangers. A new application is under investi- 
gation in this faculty which uses solid-liquid 
fluidized beds (see [l] ). 

The new heat exchanger comprises a counter- 
current solid-water fluid&d bed. Its 
development depends upon the knowledge of 
the solid-fluid heat transfer. Now the available 
heat-transfer information in this field could not 
be used because the data obtained by the 
previous investigators were in conflict. Dis- 
crepancies of published data and inconsistent 
explanations of the heat-transfer mechanism 
prompted the present research. 
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The following two objectives constitute the 
subject of this work : (a), to understand the heat- 
transfer mechanism in a fluidized bed ; and (b), 
by experimental means to obtain the necessary 
heat transfer parameter. The work is divided 
into two parts, experimental and theoretical. 
In the experimental part we obtain the necessary 
heat transfer parameters. In the theoretical 
part the mechanism of heat transfer in fluid&d 
bed is explained. For the reader’s convenient, 
the present paper comprises three main sections : 
first, the state of art of fluidized beds, described 
in Section 2 ; second, our experimental methods, 
described in Section 3 ; third, the theoretical 
investigation, described in Sections 4 and 5. In 
addition, in Section 6 our results are compared 
with those ofothers. 

2. STATE OF ART 

To understand the heat transfer between 
fluidized particles and fluid. one has to know the 
state of the fluidized bed as a whole as well as 
the fluid flow past the individual particles. The 
following three subsections (2.1-2.3) show the 
existing state of art in literature prior to the 
publication of the present study. 

Two fundamental approaches are shown in 
the literature on this subject [2, 3f, both are 
inter-related. We shall analyze [2] first. Consider 
a fluidized bed where the solid particles are 
suspended by fluid stream. It is evident that void 
fraction E or the frequently used holdup II = 1 - E 
depends upon the fluid rate which suspends the 
particles. An increase in the fluid rate will 
decrease the holdup and vice versa. If we intro- 
duce the slip velocity no which is the mean 
velocity through the voids, this dependence can 
be expressed as 

H = 1 - & = (p(Uo) (1) 

where #no) means a function of uo. The function 
depends upon the properties of fluid and solids 
and is being determined experimentally. Figure 
1 shows a typical function &uO) taken from [4]. 

Consider a fluidized bed contained in a 
vertical column where the bulk of particles is no 
longer suspended but flows downward with the 
mean velocity ua and the fluid flows upward 
with the velocity uP Assume the upward direc- 
tion as positive, i.e. uJ > 0 and u, < 0. Evidently, 

. 
u() = Uf - w,. (2) 

0.5- \ . 

. 

CM-- 

u,- EUo, ftlmin 

FIG. 1. Holdup vs. slip velocity. 

The fluid flux, the so called super~cial fluid 
velocity, will be 

% = &f (3) 

Similarly, the superficial solid velocity will be 

ii, = (1 - &)U,. (4) 

Hence we can express 

t2f ii, 

u”=-F---* 1-E 

The equations (1) and (5) predict the holdup 
N = 1 - e if the fluid and solid fluxes are known. 
The equations are not restricted to the counter- 
current operation described above, but may be 
applied to any combination of GJ and ii, whether 
positive, negative or zero. 

Likewise the approach explained above [33 
presents another, similar approach of the fluid- 
ized bed behavior, with the main difference 
being that the holdup H is presented as a func- 
tion of 9. 
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2.2. Particlr motion 
The motion of the individual particle is 

random and does not lend itself easily into 
mathematical form. Here the research is more 
difficult and the publications less numerous. The 
information found in the literature is reviewed 
below. 

Furukawa and Ohmae [5] compared the 
fluidized particles to liquid molecules and 
described the behavior of particles in terms of 
mean kinetic energy of particle. The authors 
measured the effective viscosity in gas fluidized 
beds and, basing on the molecular analogy. 
obtained an empirical correlation for the kinetic 
energy. 

Ruckenstein [6] has considered the limiting 
case of incipient fluidization and represented the 
fluidized bed by a fixed lattice model where the 
solid particles oscillate about the fixed equi- 
librium position. This model is based on the 
anatogy to the molecular behavior of solids. 
Ruckenstein derives a correlation for the diffu- 
sivity of fluid phase of the fluidized bed and 
compares it with the experimental data of 
others. 

A more general approach was chosen by 
Houghton [7], whose analysis was not restric- 
ted as that of Furukawa rt al. to gas fluidized 
beds, or as that of Ruckenstein to incipient 
fluidization. Therefore it deserves more atten- 
tion. Houghton suggested a theoretical model of 
the particle motion which is equivalent to the 
Brownian motion, with the difference that the 
particle motion is anisotropic. He described the 
particle motion by means of the Langevin 
equation in three space directions 

du. -1 dl + CXiUi = si(t) (6) 

where ai is a constant factor and si(t) a stochastic Bart in his study ofgas fluidized beds described 
term. He considered in his analysis the buoyancy the mixing behavior of tluidized particles in 
forces and the mean fluid motion which exist terms of an effective diffusivity similar to the 
in the vertical direction only, thus. making the theory of turbulent flow (see [MI]). His approach 
particle motion anisotropic. The solution of (6) was followed by Donnadieu [ 1 I], Lewis et al. 
produces the particle diffusivity [ 121, and Borodulya and Tamarin [ 131, who 

E. Ki = 2.1 (7) 
mri 

where Ei is the mean energy of particle and m 
the mass. LJnfortunately. Houghton did not 
produce any valid expression of mean energy 
El which renders his work incomplete. 

2.3. Heat transfer 
Consider the heat transfer to the single 

particle first. Here we have [g] 

Nu = a + bRe”Pr’ (8) 

where u. b. k and 1 are empirical constants. [S] 
lists the constants as determined by various 
investigators. For the flow conditions which 
apply in our case, we have 

a z 2.0 
b z 041.0 
k Z 0.5 
1 r 0.33. i 

(9) 

Now if consider the the fluidized bed as a 
whole, the apparent random motion of fluidized 
particles introduces a considerable complexity 
into the heat-transfer picture. The fluid in 
~uidized bed has a temperature gradient as a 
result of the occurring heat exchange and the 
bulk motion of particles and fluid. The random 
motion of particles, being superimposed upon 
the fluid-temperature field, causes an irregular 
temperature-time pattern in the par-tide’s am- 
bient state; whereby the particle acts as a heat 
source or heat sink at random. 

Amundson and Aris [9] analyzed this phe- 
nomenon on a statistical basis using a prob- 
ability function for particles’ distribution. 
Because of mathematical complexity, their solu- 
tion is applicable to specific and limited cases 
only. 
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measured the effective thermal diffusivity caused 
by the particle mixing of gas fluidized beds. 
Thus, there exist two pertinent heat-transfer 
modes in a fluidized bed: first, convective heat 
transfer between points of the bed caused by the 
particle mixing and second, heat transfer between 
particles and fluid reviewed before. Donnadieu 
[ 141 and Littman and Barile [ 151 showed this 
by writing the energy conservation equation for 
the solid and fluid phases in the form 

where k, is an effective conductivity caused by 
particle mixing, h the particle-fluid heat transfer 
coefficient, p density, c specific heat, and (r the 
specific particle surface defined by 

l--E 
0=6-. 

d (12) 

Now a serious question is being raised as to 
the validity of equation (11). It was noted [ 161 
that the random mixing of solids in fluidized 
beds induces a similar mixing of fluid. Cairns 
and Prausnitz [ 171 measured this mixing in 
terms of diffusivity and found it to be affected 
by holdup. This implies that an additional 
conductivity term is needed in equation (11) 
which now becomes 

wrc 

+ ho(Tf - T,) = 0. (13) 

Equation (10) and (13) form a system of 
partial differential equations which describe the 
temperature field in a fluidized bed?. To solve 
it, one has to know the heat-transfer parameters 
h, k, and k,. Toward this end we reviewed more 
than twenty papers and abstracts to learn the 

t Analogous equations exist for the y and z directions. 

parameters obtained by students of fluidized 
beds. [lo, 18, 19, 401 present summarized 
reviews of the existing state of art. 

The h values are of particular interest to us. 
They vary considerably from one investigator 
to another. This discrepancy of test results is 
best illustrated in a comparison study of Barker 
[19]. The results of his study are summarized 
in Fig. 2 which is taken from his paper. In the 
figure the heat-transfer coefficients obtained 
by different investigators are shown in the non- 
dimensional form of a Colburn factor 

Nu 
J = &pr0.33' (14) 

The indicated Reynolds number is based upon 
the particle diameter d and slip velocity uO. As 
seen in the figure, the test results differ by an 
enormous factor of 10000 (for a comparison we 
included a curve for a single sphere). Barker 
attributed the disagreement of test data to the 
shortcomings in technique of the individual 
investigators and to the differences between 
fluidized beds and conditions during the experi- 
ments. The majority of investigators used air as 
the working fluid. A few investigators used 
helium, argon, carbon dioxide or water. Most 
of them used different size particles, materials, 
and bed dimension. A majority considered the 
particle-to-fluid heat transfer to be predomi- 
nant in fluidized beds, disregarding the heat 
exchange caused by particle mixing. Other 
investigators assumed the heat exchange caused 
by mixing to be infinite which again does not 
suit our purpose. 

Analyzing the published heat-transfer data 
we found the following: In gas fluidized beds 
the volumetric heat capacity of the solids is of 
the order of about 1000 times that of the gas. 
Because of this, the gas rapidly attains the 
temperature of the solids and the heat transfer 
process is restricted to a narrow zone near the 
gas entrance to the bed. However, in liquid 
fluidized beds the heat capacities of the liquid 
and solid are of the same order of magnitude 
and the heat transfer occurs in the entire bed. 



840 E. ZAHAVI 

The numbered ltnes refer to: 

FIG. 2. Summary of heat transfer coefficients reported in the 
literature. 

Thus there exists a specific dissimilarity between 
heat transfer processes in liquid and gas fluidized 
beds which could eventually account for some 
of the discrepancy of test data. To date, only two 
papers have been published on the subject of 
heat transfer in water fluidized beds [20, 211. 
Because of our interest in water fluidized beds, 
we shall consider them separately. 

Holman et al. [20] used a steady state method 
in which stainless steel and lead spheres were 
fluidized in water and heated by induction 
heating. The diameter of particles was 1.6- 
48 mm, the diameter of test column 51 mm. 
Thermocouples were used to measure the water 
temperature at the entrance and the exit to the 
bed and water rate was measured with a flow- 
meter. In their evaluation of h the authors 
neglected to take into consideration the heat 
transfer caused by mixing of solids or fluid, i.e. 
they assumed 

k, = k, = 0. (I51 

The results were correlated by means of the 
equation 

Nu = 3.07. lo-6 Re2 p,.“S ; o’5 & 
00 

2 
Ps 

x [l - (1 - &+..+.($p]- (161 

where D is the column diameter, and Re is 
based upon particle diameter d and slip velocity 

no* 
Sunkoori and Kaparthi [21] performed tran- 

sient heat transfer tests with granite and quartz 
particles of 0.5 and l~l’mm dia. A batch of hot 
particles was dropped into an upward stream 
of cold water and the temperature of water 
leaving the bed was recorded as a function of 
time. The authors evaluated h assuming there 
were no temperature gradients in the fluidized 
bed, which means 

k, = k, = co. (171 
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They correlated their results with the formula 

Nu = 040391 Re2.’ (18) 

where Re has the same meaning as before. The 
authors predicted by means of their theory an 
exponential temperature distribution vs. time, 
a fact which contradicts the test data presented 
in the paper. They seem to have failed to 
present a valid explanation of this discrepancy. 

In view of the above described contradictory 
information obtained on the heat-transfer data, 
the analysis of Mixon et al. [22] is of consider- 
able interest in that it offers a valid explanation 
to the found discrepancies. Although intended 
for use in the liquid-liquid fluidized beds, it is 
applicable here. Mixon et al. start by discussing 
the heat-transfer coefficients h. These should be 
equal, within an order of magnitude, to the 
accepted heat transfer coefficients of single 
spheres, as expressed by our quation (8). Now, 
if one applies the accepted heat-transfer co- 
efficients to the fluidized beds under considera- 
tion, one finds them sufficiently high to make the 
temperature difference AT = T, - T, in any 
place negligibly small when compared with the 
temperature drop along the column’s axis. This 
applies, as shown by Mixon et al., to fluidized 
beds with column length exceeding the particle 
sizes by two orders of magnitude or more.? 
Thus, in the case under consideration, there is 
only a single temperature 

T,zT/=T (19) 

Its differential equation for steady state, as 
derived by Mixon et al. equals 

t For benefit of the reader who is interested in quantita- 
tive data, it should be noted that for a typical solid-liquid 
fluidized bed the Nusselt number based upon particle 
diameter is of the order of 10 which makes ATto be about 
0.5”C or less (for detailed analysis of AT, see [22]). This is 
negligibly small when compared to the temperature drop 
along the column which is of the order of two decades 
higher, see for instance Fig. 4, our typical test data 

- (k + k,)$= 0: (20) 

It corresponds to our system of equations (10) 
and(13). 

The expounded theory shows that it is neces- 
sary to know the effective terms k, + k, in order 
to be able to determine the temperatures in 
fluidized bed, and the exact knowledge of the 
heat-transfer coefficient h is irrelevant as long 
as it equals or exceeds the h value for a single 
sphere. It also proves the h values obtained by 
previous investigators to be substantially in- 
accurate : erroneous evaluation methods were 
used assuming either k, = k, = 00 or k, = k, = 0. 
This explains the apparent paradox of Fig. 2 
that the fluidized particles seem to possess lower 
heat-transfer coefficients than the single spheres. 

The present review will be incomplete without 
mentioning the work of Letan and Kehat [23]. 
They produced experimental heat transfer data 
obtained in counter-current liquid-liquid fluid- 
ized beds (spray towers). Also here was shown 
analytically that the heat-transfer coefficient h 
is irrelevant to the heat-transfer analysis of 
fluidized beds. The results could not be applied 
to the present study because of the different 
type of fluidized beds used. 

In all, we have reviewed the heat-transfer 
data in three kinds of beds: solid-liquid, 
solid-gas and liquid-liquid. We were unable to 
find effective conductivity values for use in our 
design of a solid-water fluidized bed heat 
exchanger. Therefore, we started our own 
experimental program. 

3. EXPERIMENTAL METHODS 

3.1. Test apparatus 
A counter-current fluidized bed apparatus was 

built on laboratory scale to obtain the needed 
heat-transfer data. The test apparatus was so 
designed as to create solid-water fluidized beds 
where temperatures and solid and fluid fluxes 
were to be identical with an industrial heat 
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exchanger unit. Figure 3 shows the test appara- 
tus. The essential part is the vertical test tube 4 
which contains the fluidized bed and where the 
heat transfer process takes place. The test tube is 
made of glass or Perspex which provides a 
visual aid in observing the fluidized bed. Its 
internal diameter and length can be varied. 

FIG. 3. Test apparatus. 

Two counter-current streams pass through the 
test tube: an upward stream of hot water and 
downward stream of cold solids. The flow of 
solids originates in the hopper 1. From here the 
solids flow through the control orifice 2 into 
the test tube and then, through the bottom pipe 
5, into the storage vessel 6. The hot water comes 
from the pressurized water heater 10 and is 
delivered through the supply line 8 into the 

lower part of test tube 4. Before it enters the test 
tube, it passes through the filter 9 whose function 
is to guard against penetration of fluidized solids 
into the supply line 8. After passing the test 
tube, the water gets into the overflow container 
3 from where it is disposed by means of the dis- 
charge line 7. There is an additional discharge 
line 11, whereby water is discharged from vessel 
6 while the vessel is being filled with solids. The 
control orifice 2 is provided with a slide valve 
which permits a sudden opening or closing of 
the orifice. 12 is a recirculation pump which is 
used during the preparation prior to the tests. 

The following measuring devices are used in 
the test apparatus. The holdup is measured 
by means of the pressure differential gauge 
P-l. T-l to T-14 are thermocouples: T-l 
measures the temperature of dry solids, T-2 the 
temperature of entering water, T-3 to T-14 the 
temperature of bed. F-l and F-2 are two sets 
offlowmeters. The flow rate ofwater is controlled 
by means of needle valves located next to the 
flowmeters. The flow of solids is controlled by 
the orifice 2 which is calibrated prior to the test. 
The flow rate of water through the discharge 
line 11 is set equal to the flow rate of solids 
through the orifice 2. 

The length of the test tube was varied between 
74 cm and 235 cm. The diameter was either 
24 mm or 44 mm. The solids were glass spheres, 
0.33, 0.71 and 3.0 mm dia. and steel spheres, 
0.91 mm dia. (their properties are given in Table 
1). The holdups were 4-25 per cent. Only 
counter-current operations were performed with 
the solid and fluid fluxes so adjusted that 

G,c, _ 1 p_ 
GfCf 

(21) 

where G, and G, are the solid and fluid rates in 
kg/min and c, and cf the specific heats. The 
latter condition was chosen because of its 
industrial application. 

Table 2 shows the test readings with all the 
pertinent test data. The thermocouple locations 
x0, x1, x2, etc., refer to their positions as measured 
from the bottom of test tube 4. The temperature 
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Table 1. Properties ofsolids 

Material Glass Glass Steel Glass 

Diameter, mm 0,25%u40 0.594.84 @84-10 3.0 

Spec, heat, z 0.210 0.209 0.118 0.214 

Spec. gravity, -$ 2.51 2.48 7.85 246 

Supplier Metal Improvement Co. N.J. E.T.E. Salvadory 
France 

readings T,, T,, T2, etc., correspond to the 
respective thermocouple locations. Figure 4 
shows temperature readings of a typical test. 

6C 

5C 

.u 4c 

i 

3c 

2c 

IC 

‘3 \ 
h 

\ 
\ 
o\ 

‘0 
‘0 

\Q 
\ 
“\” 

;- 
x, cm 

FIG. 4. Typical temperature readings. 

3.2. Data reduction 
Here we use the differential equation (20) 

obtained by Mixon et al. With some modifica- 
tions it becomes 

dT d2T o -- 
‘,ff dx hff Q = (22) 

where ueff is an effective velocity term defined by 
the equation 

U (I- G%~, + EPrCsU/ 
eff = (1 - &)P,C, + &P,Cf 

and Keff is the effective diffusivity defined by 

K 
k - k, 

eff = (1 - &)P,C, + p/c; 
(24) 

In the case under consideration we have Ueff = 0 
as a consequence of condition 
this, equation (22) changes into 

d2T _ 
@= 0. 

(21). Because of 

(25) 

x is measured from the bottom of test tube 4 
upward. The boundary conditions which apply 
here are 

T= TO when x=0 (26) 

when x = L (27) 

where L is the length of the test tube and T, the 
temperature of solids in hopper 1. With this the 
solution of the differential equation (25) will be 

T= T, - (TL - l&j?.; (28) 
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where T, is the bed temperature at x = Land 
m 

j? is defined by the equation s= (ATJ2 = 

ficiG+.-.$. 
s f (29) z{q- [TO-(TL-q)p$J (31) 

From the test we get temperature readings 1 

To, TL and TV (v = 1,2,. . .) where TV values 
correspond to thermocouples’ locations x,. 

where m is the number of temperature readings. 

Upon insertion into equation (28), they should 
One finds the values of /?, To, TL by solving the 

produce B which then can be used to evaluate 
systemofequations 

k, + k,. But the actual value To, TL and T, 
deviate from equation (28), because of instru- 
mentation errors and discrepancy between the 
idealized theory and experiments. Because of 
this, the last squares method is used to evaluate 

a* 

as 

ap=O 

as 0 
aT,= 

I”” ““” 

I 

2oca- 

IO 000 - 

*coo - 

6000 - 

00 
o Glass 0~335mm dia. 
A Glass 0.715 mm dia. 

l Glass 3.0 mm dia. 
A Steel 0.915 mm dia. 

4ocJo I I I 
ZO 40 60 80 100 200 400 600 800 1000 2000 

RL?’ 

FIG. 5. Test results. 

The deviation of T, from its theoretical value and 
is 

AT,= TV- ITo-(Tr- T,).jL$‘l. (30) 
as 0 -=. 
8% 

(34) 

L “J This we did by method of function minimization 
The sum of squares of AT,, equals of Regev [ 241. 

(32) 

(33) 
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3.3. Test results 
We plotted our test results to indicate the 

trend. Once the results fell into an accepted 
range, we proceeded to develop a theoretical 
model to explain this trend. The theoretical 
model is described in Sections 4 and 5. The final 
formula is 

Gff -= 
c psc, Re*0’25 

v/ *Gpr075 (35) 

where the Reynolds number Re* is defined by 
equation (89). C is a proportionality constant, 
the value of which was the missing link in our 
model. By fitting the test data and using the 
least squares method it was found that 

C = 5320. (36) 

Figure 5 shows graphically the relation 
between the test data and the above formula. 
The standard deviation of the scatter was calcu- 
lated and found to be f 34 per cent. 

4. DIFFUSION OF HEAT IN A F’LXJIDIZED BED 

Our theoretical model aims to explain the 
nature of effective conduction in fluidized beds. 
Mixon et al. [22] showed successfully this 
phenomenon to be predominant in heat trans- 
fer in fluidized beds, but did not give sufficient 
theory. Our theoretical explanation follows. 

The conduction is a result of the solid mixing 
which resembles the eddy motion of turbulent 
fluid flow. This resemblance is especially evident 
visually to an observer of fluidized bed in motion. 
We follow the methods of the theory of turbulent 
flow to determine this conduction. For simplifi- 
cation’s sake, we accept the ‘*perfectly mixed 
drop” model of fluidized particles, i.e. we assume 
the conductivity of particle material to be 
infinite and the particles do not possess internal 
temperature gradients. As for the fluid, we 
ignore its molecular diffusion: the latter is 
negligible when compared to the turbulent 
diffusion. 

We express the velocities and temperatures 
in fluidized bed by means of the sums of the 
mean values and the fluctuation terms, i.e. 

us,i = i& + u; i (37) 

Uf,i = uf,i + U;,i (38) 

T, = Ts + T: (3% 

T/ = T; +T; W) 

where index i denotes the space directions, and 
s andfdesignate the solid and fluid respectively. 
u,, i and u,., i are vectors. Any part of the fluidized 
bed is subject to the energy conservation law. 
In the form known to the reader from the 
turbulent theory, it becomes 

(1 - 4PsG 
aT 

[ 

- aT a 
at + us,iz + --<m) . i axi 1 - - 

+'PfCJ [ as + c,ias + &(T;U;) 
1 

= 0 (41) 
t . i 

where the respective values p, c and i; are 
assumed to be constant. In writing equation 
(41) we use the summation convention whereby 
repeated subscripts mean summation. Equation 
(41) expresses our view that the heat exchange 
takes place by means of convection only and the 
molecular diffusion of fluid is ignored. 

Several simplifications are in order before we 
proceed with the analysis of (41). First, we 
assume the difference AT= r - q to be very 
small when compared to the measurable tem- 
perature differences between various points of 
fluidized bed. This subject was discussed at 
length by Mixon et al. [22] who showed this to 
be so in industrial fluidized bed, i.e. if r and 7 
and their first space- and time-derivatives are 
continuous and monotonous functions of xi 
and t which we expect them to be, the deriva- 
tives of ATwill be negligibly small and one can 
write 

aJ_aaT; aT 
at =at=at (42) 
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and 
- - 

aT,_aTj__ aT 
axi = axi - i+& 

skipping the index s andffor brevity. Consider 
now the vectors m and m. Both have 
the character of a heat flux. Consider m 
first. It represents a heat flux caused by particle 
mixing. Following the methods of Boussinesq 
[25] and Schmidt [26]. we make the assumption 
that it is proportional to the mean temperature 
gradient, i.e. 

Gff,ij = 
(1 - E)PsCsKs, ij + WIC/IC/, ij 

(1 - hws + EPsCr 
(49) 

(43) 

where K, is a proportionality constant. The con- 
stant, of course, may differ in each direction xi% 
thus the general form will be 

where K,, ij is a tensor. As for T@;, i, it represents 
the heat flux caused by fluid mixing. Here 

aT 
m = - KJ.ijF (46) 

where rcs, ii is another constant tensor. Combin- 
ing equations (41) and (46) we obtain 

- 

[Cl - EbsC.9 + WfCfl g+ IIt - E)P&scs, i 

- 

+ WfCfif, il g - lI(l - E)PsCsKs, ij 

I 

a2T 
+ EP//Kf, ijl a$ = O* (47) 

1 -J 

It is equivalent to equation (20) which was 
derived formerly by Mixon et al. Upon putting 

ueff,i = 
C1 - EIfsc& i + “Pfcfkf, i 

(1 - s)P,cS + &P/C/ 
(48) 

we finally obtain 

aT _ aT a2T 
..- = 0. 

z + Gff, i z - Kerr, EJ a+axj (50) 
I 

The latter is the thermal diffusion equation of 
fluidized bed. 

Because of its importance to heat-transfer 
analysis, equation (50) deserved more attention. 
The mean temperature Tcan be expressed by 
means of the probability function p(x, t). It 
can be shown (see the next chapter) that equa- 
tion (50) is equivalent to 

aa, t) + aa, 0 
at 

u 
eff,i-gr - Ic 

a544 t) o 

eff. ij ax,axi = . 

(51) 

Now the latter is a particular form of the Kolmo- 
gorov’s forward equation of stochastic processes. 
Consequently we can consider the heat-transfer 
process in fluid&d bed as a Weiner process. 

Here we refer to the Houghton paper [7]. 
Houghton was the first to suggest a Wiener 
process model for fluidized beds. Although he 
considered the particles’ motion and not the 
heat transfer, some of his results also apply here. 
In the next chapter we shall derive the effective 
diffusivity from the existing solution of Wiener 
processes. 

5. EFFECTIVE DIFFUSIVITY 

We consider the heat-transfer process of a 
single particle. With certain simplifying assump- 
tions it becomes a Wiener process. From the 
theory of Wiener processes we will find the 
effective diffusivity to be a function of the mean 
kinetic energy of particle and the heat-transfer 
coefficient. In what follows, we shall develop 
the expressions for the kinetic energy and the 
heat transfer coefficient, and apply it to obtain 
the correlation of the effective diffusivity. 
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5.1. The Wiener process 
We observe the random behavior of fluidized 

particles using the Lagrangian system, i.e. we 
mark each particle by means of parameter 
x = (xi,’ x2, xg) and follow the particle along the 
coordinates X = (X,, X,, X,) and t. Parameter 
x is the position of particle at time t = to. The 
particle’s velocity in Lagrangian term is 

U(r, t) = ;A-(x, t). 

As shown by Houghton [7], the behavior of 
an individual particle can be described approxi- 
mately by the Langevin equation 

(53) 

where m is the particle’s mass,f a friction factor 
and F;(t) a stochastic term. To circumvent the 
dificulties impending the solution of equation 
(53) and described at length by Houghton, we 
make several simplifying assumptions at the 
expense of accuracy. The assumptions are: 
first, say that the fluidized bed is isotropic, and 
neglect the influence of walls and buoyancy ; 
second, we assume equipartition of energy ; 
third, we say that the collision process is purely 
random. The third assumption means that 

and 

Fm = 0 when t # s (54) 

F,(t = const. 

= 2mE when t = s (55) 

where E is the mean energy of particle (see 
[27]-[29]). In conjunction with the above 
assumptions, the behavior of fluidized particles 
can be explained by means of the theory of 
Brownian motion. 

Consider the heat transfer in the light of the 
explained particle behavior. The heat balance 
can be described by the differential equation 

vpsc, 4 + Ah(T, - T,) = 0 (56) 

where Vis the volume of the particle and A its 
surface. As will be explained later in subsection 
5.3, the heat transfer takes place by means of 
heat dissipation eddies. The thickness of the 
thermal boundary layer surrounding the particle 
corresponds to the size of the eddies. Outside 
the boundary layer the heat is already dissipated 
and the temperature is substantially uniform, 
i.e. equal T’. In view of this, the above equation 
has to be corrected to read 

VpScSd$ + Ah(T, - T,) = 0. (56’) 

By differentiating the latter in respect to time 
and expressing T, in terms of its mean and fluc- 
tuation components, one obtains 

d2T’ 
NcQ$ 

d2 T 
+ Ah% = - VpSc,L 

dt2 

- Ah;(T - T,). (57) 

Here, the last right term equals zero by virtue of 
(42) and (43). The remaining term equals 

- vpE.$ = ;(- vi&d& K’(t) (58) 

where K’(t) denotes the time derivative 

From here we obtain the Langevin equation 

d2T’ 
- v4cs &2 2 + Ah z = K’(t). (59) 

Function K(t) is stochastic because it depends 
upon the random particle motion. In the 
fluidized bed under consideration, during the 
steady state, the mean temperature gradient is 
constant because of the precondition (21). 
During the transient condition, even that the 
error is about f 1 per cent, we still take it as 
a constant. This makes K(t) equal 

- 

K(t) = - V;o,c, z = - Vj&.$ 
L 
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and its correlation function equal 

KTt)K7s) = 0 when t # s 

and 

(61) 

KoK(s) = 
( > 
Vpsc, 2 2 , T = const. 

I 

when t = s. (62) 

Equations (59), (61) and (62) make the heat 
transfer a Wiener process. 

As a result of all that has been considered up 
to now, we see that the particle motion and 
particle heat transfer both are expressed by the 
same Langevin equations (53) and (59), and both 
can be classified as Wiener processes. Therefore 
we propose by means of the existing Wiener 
process solutions to solve the heat-transfer 
problem. 

Equation (59) can be brought into the more 
convenient form 

(63) 

where 

Ah 

y = VP&, 

and 

r#i(t) = s. 
s s 

(64) 

(65) 

Its approximate solution, as shown in [30], is 
the Gaussian probability function 

p(T:,f)=&+exp (66) 

where x is the diffusivity factor defined by 

(67) 

Now the object of the present analysis is the 
probability function p(x, t) which we get from 
166) bv means of the transformation 

PW. t) = p(Ti, t). (68) 

see [31]. 

Now consider Tj and Xi as defined by the 
equations (53) and (59) respectively. Between 
collisions, the stochastic terms F’(t) and K’(t) 
equal zero and both equations are similar e.g. 
T: and Xi are both exponental functions of t 
with their respective exponents proportional to 
the heat transfer factor Ah and the friction 
factor f. Following the Reynolds analogy, we 
assume the friction mechanism and the heat 
transfer of the particle to be equivalent. The 
assumption implies that Ah is proportional to f 
and 

dT: = const 
dXi ’ 

Consequently, if x is the particle location at the 
initial time t = to, the probability function 
p(XI x, t) will have the Gaussian distribution7 

PK t) = PWJX? t) 

=‘.-p[-(xi4Kfli)2] (70) 
(47nct)* 

where 1c is the diffusivity factor 

v vpsc, 2E 
K=‘=x.; (71) 

p(X( x, t) satisfies the Kolmogorov’s forward 
equation 

&P(XI”, 0 - u&(x/x, t) = 0. (4 
I 

If we express the mean temperature TX, t) by 
means of p(X)r, t) so that 

T(X, t) = _;ps(x, t) . p(Xlx, t) . dx (73) 

we find that equation (72) is equivalent to 

aT a2T o -- 
at ‘m= * (74) 

t As follows from equations (66), (68) and (69). 
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The details of this are given in Appendix. 
Returning to equation (71), the diffusivity 

factor IC is a function of mean energy E and heat- 
transfer coefficient h. In the following sub- 
sections we shall derive the expressions for E 
and h. 

5.2. Mean energy of particle 
We assume the fluidized bed to be isotropic, 

the energy of the particles to be subject to 
equipartition law and the particles to be spheri- 
cal. 

Each particle is subject to fluctuating forces 
which comprise weight, drag, and collision 
forces. The first is constant, the other two are 
random. The mean resultant of all forces equals 

where W is the particle’s weight in fluid, D the 
drag, cD the drag coefficient and u. the slip 
velocity (the mean collision force equals zero, 
hence, it is dropped from the equation). 

The mean energy of particle equals 

E-P’IB 
N 

(76) 

where p is the pressure, V, the volume of fluid- 
ized bed, N the number of particles in volume 
V,. Since the pressure is statistically independent 
of V,/N, equation (76) becomes 

E (77) 

The mean pressure is 

nd3 7uf2 4 
p=-$ 

gPs - P,) - cD4&- 29 
nd2 

(78) 

1 
.; . f&. 

(79) 

The latter equation is considerably simplified 
if we use the empirical correlation which we 
derived from the tests of Wilhelm and Kwauk 
[32]. Wilhelm and Kwauk made a thorough 
investigation of fluidized beds in 7.5 and 15 cm 
dia. columns. The solids were spherical particles 
of sand, glass, silicate catalyst and lead, ranging 
from 03 to 5 mm dia. Fluids were air and water. 
To suit our purpose, we confined the evaluation 
of their tests to water fluidized beds only. Upon 
plotting the test data as shown in Fig. 6, we 
obtained the empirical correlation 

= l.l$(& - P/).(1 - &)“.33 (80) 

where the CD values correspond to single spheres. 
Equation (80) simplifies our expression of E. 
Combined with (79) it produces 

E = o.734$(p, - pr) . 
d 

(1 _ E)0.67’ t81) 

From equation (81) one can obtain the root 
mean square of the 
particle. It equals 

fluctuation velocity of the 

= 1.21 (g4°‘5 
(1 - &)@33 

= (,@). (82) 

5.3. The heat-transfer coefficient 
In analyzing the heat transfer to fluidized 

particles, most authors assume the interestitial 
flow to be laminar in character and independent 
of time. The analysis is based upon an assumed 
steady state velocity profile in the fluid. Con- 
trarv to these assumntions. exnerience has 

4 4 

From here the mean kinetic energy equals 
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Solids : 

Glass 0.29mm dia. 

Glass 0.51 mm dia. 

Glass 5.21 mm dia. 

Sand 0.37mm dia. 

Sand 0.56mm dia. 

Sand I ,O mm dia. 

Socony catalyst 3.28mm 

Socony catalyst 5.21 mm 

Crushed rock I.41 mm 

Lead shot I.28 mm dia. 

FIG. 6. Mean particle force vs. holdup. 

shown the flow to be of fluctuating character 
and filled with turbulent eddies. Hence the old 
theories prove to be inadequate and one must 
turn to new phenomenological theories when 
calculating the heat transfer to the fluctuating 
particles. 

[33] lists several phenomenological theories 
that are applicable to the turbulent flow under 
consideration. The most suitable is the penetra- 
tion theory which was first introduced in [34] 
and [35]. The theory assumes the turbulent 
eddies to penetrate the liquid film surrounding 
the solid body. 

From the above, a physical model is derived 
that is based on the following assumptions. 
First, the flow ambient to the particleis turbulent 
and the turbulent motion reaches the particle’s 
surface. Second, the turbulence is isotropic. The 
latter assumption, i.e. isotropic turbulence near 
the wall, is made to utilize the existing correla- 
tions deduced for the isotropic turbulent flow 
from the statistical theory. It is done in similar 
analyses, as for example in [36]. (The validity 
of correlations in the vicinity of wall that were 
derived for isotropic turbulence-eg. the Kol- 
mogorov’s 213 law-was confirmed experi- 

mentally by others. Such validity is, of course, of 
empirical nature only, since the correlations 
were derived assuming complete isotropy.) 

We use Kolmogorov’s 2/3 law of isotropic 
turbulence as applied to the heat dissipation. 
The latter application was demonstrated by 
Yaglom [37] who applied it to the temperature 
field of isotropic turbulence and obtained the 
213 temperature law 

[T(x + f) - 7fX)]2 N I3 (83) 

where the left hand term represents the second 
order temperature moment and 1 is the distance 
between observed temperature fluctuations. 
Obukhov [38] obtained the same result by 
non-dimensional reasoning. A direct conse- 
quence of this law is the determination of the 
heat dissipation length 

/..3 \o.zs 1 

SW y 
t /J = (Re . &.7s (84) 

derived by Obukhov [38], and corresponding 
directly to Kolmogorov’s microscale 

/..3 \@ZS I 
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(the index m above means molecular and the 
Reynolds number is based on the length I). 

The heat-transfer coefficient around the fluid- 
ized particle equals 

h=&f (86) 

where keff is the effective conductivity caused 
by heat-transfer eddies (not to be confused with 
the effective conductivity of fluidized bed dis- 
cussed before) and Ax is the heat absorbing 
layer thickness surrounding the particle. Now 
Ax N 6. We also assume the heat transfer 
eddies to equal the viscous dissipation eddies, 
i.e. 

k 
K 

eff 
- - z V&f = u’ .1. 

eff - pfcf 

This produces the Nusselt number 

(87) 

Nu = gk = const. (Re . Pr)1’75 (88) 
m 

where both Nu and Re are based upon the eddy 
size 1. Since the latter varies in a direct propor- 
tion to particle size d, the same equation (88) 
applies if we replace I by d. The velocity used in 
equation (88) is the root mean square of the 
particle’s fluctuation velocity (m, so that 

Re = Re* = (,j$?.d 
. 

V_f 
(89) 

Combining the equations (71), (81), (88) and 
(89), we obtain the final correlation for the 
effective thermal diffusivity of fluidized bed 

Kerr -= 
c pg, Re*0’25 

.p/c/pr075 (90) 
vf 

where C is a proportionality constant to be 
determined experimentally. As shown in Section 
3, it equals 5320. The correlation fits well into 
our test data, as was shown in Section 3. In 
Section 6 we make a comparison with the 
experimental data of others. 

6. COMPARISON OF OUR RESULTS WITH 
OTHERS’ TFST§ 

From the numerous literature reviewed we 
chose to check against equation (90) those 
tests that were conducted with water-solid 
fluidized beds. The results of the following 
investigators were used: Cairns and Prausnitz 
[17], Holman et al. [20]t, Letan [39]$ and 
Sunkoori and Kaparthi [21]. The results of the 
comparison are shown in Fig. 7. 

loo 000 

F 
n Holman et d 

6 
l Letan 

n 0 

4occO- A Sunkoori ef al. 
0 Cairns et al. 

2 
; 

e 
$2 

i 
4% * A 

IOOOO- 
0 

4caJ I I 
20 40 100 200 400 1000 2000 

Re* 

blG. 7. Correlabon of results of present work with test data 
of other investigators. 

In the figure notice the data of Cairns et al. 
The tests are of particular interest because the 
subject of research was the mass transfer and 
the effective mass conduction, and not the heat 
transfer as in the others. As seen in the figure, 
the data of Cairns et al. follow the same pattern 
which shows that the particle’s heat transfer 
and mass transfer are equivalent. 

7. CONCLUSIONS 

An experimental investigation of heat transfer 
in solid-water fluidized beds by means of steady 
state tests was conducted. The solids were 0*3- 
3.0 mm dia., glass and steel; the holdups were 
4-25 per cent. It was found that the experimental 
data could be correlated by means of the semi- 

t Our evaluation was based on transient data shown in 
the reference. 

1 By kind permission of Dr. R. Letan. 
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empirical equation, developed later in our 
theoretical analysis 

Ic eff -= 
c p&, Re*“” 

wu 
V_f 

*P/cr*pi3- 

where Keff is the effective thermal conductivity 
of fluid&d bed, C an empirical constant, and 
Re* Reynolds number, based on the particle’s 
diameter and the root mean square fluctuation 
velocity defined by equation 

(#) = 1.21 (l(r$;‘S. 1 - F 
( > 

o’5. (82). 
s 

After plotting the test data, the value C = 5320 
was obtained, The experimental data fitted 
equation (90) with a standard deviation +34 
per cent. 

An analysis of the heat transfer caused by 
particle mixing was performed by means of the 
theory of stochastic processes. Taking the heat 
transfer process as a Wiener process and using 
the existing solution of the Wiener processes it 
was shown that the effective thermal diffusivity 
of solid-liquid fluidized bed can be expressed 
by equation (90). The derivation of (!I@) was 
facilitated by assuming the fluid&d bed to be 
isotropic and the kinetic energy of particles to 
be subject to equipartition law. Also it was 
assumed the fluidized bed to be counter-current 
withG&, z Grcr. 
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APPENDIX 

(Note: equation (A.4) follows from the experimental work 
described; equation (A.5) follows from the fact that both 
distribution functions, p@Jx, t) and p( UI x, t) are expressed 
by equivalent Gaussians, see [30].) Then 

Derivation of Thermal Diffusion Equation 

The mean temperature is defined by 

T(X, t) = +s”T,(x, t) p(xl x, c) . dx. (A.1) -m 

+CO +WJ 

J t&@+,t).dr = J s.p(Xjr.t).dr. (A.7) 

-m -m 

Its partial time derivative is The heat transfer equation for the particle may be written as 

aT +maT 
+m 

I 
+m 

at’ $. p(X(x, 2). d_r + 
s 

T, .$(X(x, t) . dx. 

+m 

(A.2) J ~.p(Xlr,t).dr = -y J (T, - Tf).p(XJx,c).dx 
-m -m -m -m 

+02 

J Dg. p(Xlx, t) . dx, 

+m 

the mean value of the derivative following the motion of 
the particle temperature, is given by 

+CC 

J ~.p(xlx,c).dx = +p$ + U~}.p(Xlx,t).dr 
-03 -m 

+03 +.XJ 

= J ~.p(Xlx,t).dx + J U,g . p(Xlx, t) . dx. 64.3) 
i 

-03 -m 

it becomes 

Jp&l-‘. vi@, t) . p( 111 x, t) . dx 

which is zero, since 

23 = E + !T: = const 

ax, ax, ax, . 

= const. 64.5) 

64.4) 

and the mean value of the particle velocity following the 
motion 

ui = j~r&t).p(ulx,t).dx = 0. (A.6) 
-m 

c-y J dT; 
T:.p(Tblx,t). z .dr I I (A.8) 

-m 

so 

+maT 
+m 

J $.p(Xjx,t).dx = -y J T;.p(T:(x,t): I ‘I 2 .d.r -0 -m -m (A.9 
since T: is a completely random function. Hence 

aT +m 
dt= s 

T.. $J(XI x, t) . dx. 

-m 

(A.lO) 

Considering The second space derivative of T equals 
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+* 
a2T -=_ 
axi2 

a;, ~.p(Xlx,tW s I , 

-m 

(A.ll) 

where 

+"aT a 
+, 

s 
2. -p(X[x, t). dx = g. & 
ax, ax, s 

p(X[x. t). dx = 0. 
I I -a -11 

Thismakes (A.13) 

The first right term of this equation is a derivative of a con- 
stant, hence equals zero. The second right term becomes 

+‘X 

a - s T, . $(X1x, t) dx = 
aXi , 

-a 

+ 

+cU 

s 
T,. $+$X/x, t). dx (A.12) 

-1 

aZT -- 
L- = 

ax; s T,. &J(Xl x, Q. dx. 
--1o 

(A.14) 

The probability function p(XIx, t) satisfies the equation 

$(XJx, t) - Kgg4XlX~ 0 = 0. (A.15) 
I 

In conjunction with equation (A.lO) and (A.14) the latter 
becomes 

aT azT _- 
at 

K--O, 
ax? 

TRANSFERT THERMIQUE DANS DES LITS FLUIDISES LIQUIDES 

R&sum&II existe deux modes de transfert thermique dans un lit fluidist : l’un est le transfert thermique 
convectif entre des points du lit, cause par le melange des particules, et l’autre est le transfert thermique 
superliciel entre les particules et le fluide. Les deux modes produisent une convection ou une diffusion 
thermique effective dans le lit fluidid. Alin de prtdire les temperatures dans le lit fluidise, il est necessaire 
de connaitre la diffusivite thermique effective. Les objectifs atteints de la prtsente recherche sont (a) l’explica- 
tion theorique du transfert thermique et (b) la determination experimentale de la diffusivite mentionnee. 

Le travail est divist en deux parties principales, l’une experimentale et l’autre thtorique. Dans la partie 
experimentale les valeurs de la diffusivitt thermique effective sont obtenues au moyen d’un montage a 
lit fluidise. Les valeurs obtenues repondent a la correlation semi-empirique developpee dans notre analyse 
thtorique : 

h’etc psc, Re*’ ” 
-=c.---. 

VI p,c, F 

oh Re* est un nombre de Reynolds base sur le diametre de particule et la racine car& de la moyenne 
quadratique de la fluctuation de vitesse definie par l’tquation : 

(&“) = 1.21 -(gd)0.5 ( > 1 _ 3 o’5 
(1 - p3 P. 

C est un facteur de proportionnalite. En reportant sur un graphique les resultats des essais on trouve 
C = 5320. Les rtsultats repondent a l’equation ci-dessus avec une deviation standard de +34 pour cent. 

Dans la partie theorique du travail, une analyse du transfert thermique cause par le m8ange des par- 
ticules est conduite au moyen de la theorie des processus stochastiques. On montre qu’avec certaines 
hypotheses simplificatrices le processus du transfert thermique devient un processus de Wiener. A partir 
de la theorie des processus de Wiener on trouve que la diffusivite thermique effective du lit fluidist est 
une fonction de l’energie cinetique moyenne de la particule, et du coefficient de transfert thermique. On 
dtveloppe, pour completer l’analyse, les expressions de l’energie cinetique moyenne de la particule et le 
coefficient de transfert thermique. Ces deux expressions en accord avec la thtorie des processus de Wiener 

conduisent a la correlation semi-empirique citee auparavant. 

WARMEUBERTRAGUNG IN FLUSSIGEN FLIESSBETTEN 

Zusammenfaasung-Es gibt zweierlei Arten der Wlrmeiibertragung in Fliessbetten : Einmal die konvektive 
Warmeiibertragung zwischen verschiedenen Stellen des Bettes, verursacht durch die Mischbewegungen; 
zum anderen die Wlrmetibertragung von der Oberfllche der Partikel an das Fluid. Diese zweierlei Arten 
ergeben zusammen eine effektive Warmeleitung oder Diffusion im Fliessbett. Urn die Temperaturverteiling 

(A.16) 
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im Fliessbett vorauszuberechnen, beniitigt man die Kenntnis der effektiven Warmeleitfahigkeit. Die 
Ergebnisse der vorliegenden Untersuchung sind : 
(a) theoretische Erkllrung des WIrmeiibergangs; (b) experimentelle Bestimmung des effektiven Wiirme- 
transports. 
Die Arbeit ghcdert sich in zwei Hauptteile, einen ex~rimentellen und einen theoretischen. Im experi- 
mentellen Teil sind Werte des effektiven WBrmetransports mit Hilfe einer Fliessbett-Versuchsapparatur 
ermittelt. Diese Werte be&lit&en die halbempirische Beziehung. die im theoretischen Teil abgeleitet wird, 

k p c Re*0,25 4ff = C_“.-___ 

Y I prCf Pro.75 
wobei Re* eine Reynoldszahi ist, die mit dem Partikeldurchmesser und der Wurzel aus dem mittleren 
~eschwindigkeitsquadrat gebi~detwird mit 

C ist ein ProportionalitBtsfaktor. Durch Auftragung der Versuchsergebnissc wurde C = 5320 ermittelt. 
Die Versuchsergebnisse stimmen mit der obigen Gleichung mit einer Abweichung von + 34 Prozent 
i&rein. 
Im theoretischen Teil der Arbeit wurde eine Analyse d~w~rmetransports, der durch die Partikel~wegung 
verursacht wird, mit Hilfe der Theorie der stochastischen Prozesse durchgef~rhrt. Es wird gezeigt, dass mit 
einigen vereinfachenden Annahmen der Vorgang des WLrmetransports zu einem Wiener-Prozess wird. 
Ausgehend von der Theorie ftir den Wiener-Prozess ergibt sich, dass der effektive WLrmetransport des 
Fliessbettes eine Funktion der mittleren kinetischen Enernie der Partikel und der Wiirmeleitfahiakeit ist. 
Urn die Analyse zu erglnzen, wurden Ausdrticke fiir die mittlere kinetische Energie der Partikel-und fur 
die Wiirmeleitfihigkeit abgeleitet. Beide Ausdriicke in Verbindung mit der Theorie fur Wiener-Prozesse 
ergeben die oben angegebene hal~mpirische Beziehung. 

hIHOTal(HSI-~~ nCeB~00WU~eHHOM CJIOe CymeCTByeT JIBa pOna nepeHOCa TeIIJIa: KOn- 
BeKTUBHbIti TennOO6MeH MCPK~J’ TO'IKaMU CJIOA, m.mnanKbIli nepeUemnI3aKUeK sacTUrl II 
IIOBepXHOCTHbIfi TenJIOO6IieH Memny 'IaCTUnaMU U CpeaOii. (hki BbI3bIBaIOT B~@eKTUBHyIO 
Ten~OnpOBO~HOCTb UJIU ~U~~y3I~~ TenJIa 3 nCeB~OO~~~eHIiOM CJIOe. ,@In TOrO, YTOfibI 

pa~Cq~TaTb Te~ne~aTy~y B nCeB~OO~~~eHH0~ CJIOe, HeO6XO~~~O RHaTb 3~~eKTI~BHy~ 
TeMnepaTypOnpOBO~lIOCTb. AaInIoe IIcc~e~oBanIie nUen0 Ane nenU: TeopeT~YecKoe 
06~ncrretiee TennOO6MeHa II 3KcnepnMeIITanbIIoe onpefienenne 3QQleKTImUoU TeMnepa- 
TypOnpOBO~HOCTU. 

Pa6ora JIeJIUTCfI Ha Rae OCHOBHbIe YaCTU: 3KCllepUMeHTaJIbIIyIO U TeOpeTU'IeCKyIO. B 
3KCnepUUeHTaJIbHOU YaCTU 3IIa'IeHUR a$@eKTUBHOU TeMnepaTypOnpOBOJ(HOCTU IIOJIyUeHbI IIa 
3KCnep?fMeHTaJIbHbJX yCTaHOBKaX C nCeBROO?KU?KeHHbIM CJIOeM. flOJIyYeHHI,Ie 3IIa~eHUR 
o606~a~TcnnO~y3Mn~pUYeCKnM COOTHOnIeIIiIe~,B~Be~eHIi~~ 3TeOpeT~qeCKO~ 4aCTU 

rae Re*-mmm FWiHonb~ca, OTHeCeIIHOe K RUaMeTpy WCTUUbI 11 Cp@~HeKBaRpaTUYHOU 
CK~P~CTU nynbcaIIUU,onpeAenneUoP ypasaeaaea 

(6) = 1,2I fi*(I-~)“*’ 

rAe ~-KO3~~~~~eHT npOUOp~~OHa~bHOCT~. &HS rpa~~~qeCKOM npeACTaB~eHUIi 3KcnepW 
MeHTaJIbHblX AaHHbIX HaU~eHO,YTO c = 5320. ;>KCnepUMeIiTaJIbHbIe HaHHbIe 0606maIoTcn c 
nOMOmbI0 aTOr ypaBHeHUU CO CTaHJIapTHbXM OTKJIOHeHUeM +34%. 

R TeOpeTUUeCKOU '(aCTI C IIOMOmbIO TeOpUU CTOXaCTUYeCKUX npOneCCOB npOBOAnTCR 
aIianU3 TeIlJIOOBMeHa, BbI3BaHHOrO nepeUemUBanUeM UacTUn: noKasarI0, YTO npn 
onpe&enenabIx ynpoIqeUunx npoyecc TennooBUena CBORMTCFI K nurrepoactfo~ry npoueccy. 
II.1 TeOpUU BUHepOBCKUX IIpOneCCOB HattxeHO, 9TO 3#~eKT~aIIafl TeMnepaTypOUpOBOAHOCTb 
nCeB~OO~U~eHHOr0 CJIOR eCTb ~YHK~~~ CpenHefi K~HeTUqeCKO~ 3Hepr~U ~aCT~~~ U 

KO3+)jUnMeHTa rennoo6mesa. Ana~~33aBepmeHB~BOXOM B~pa~eH~~CpeAHe~ K~HeT~qeCKO~ 
BHepFUU 'IaCTUnbI U KOa#I&iUUeHTa Tennoo6%eHa. 06a BbIpaHteHUR COBMeCTHO C TeOnUeU 

BUHepOBCKUX npOneCCOB AaIOT nOJIy3MnUnUUeCKyIO ItOppeJI"nWIO, npIlBeAeHHyI0 BbIme. 


