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Abstract—There exist two pertinent heat transfer modes in a fluidized bed : one—convective heat transfer
between points of the bed, caused by particles’ mixing; and the other—surface heat transfer between
particles and fluid. The two modes produce an effective heat conduction, or diffusion, in the fluidized bed.
In order to predict the temperatures in the fluidized bed, the knowledge of the effective thermal diffusivity
is necessary. The achieved objectives of the present research are: (a) theoretical explanation of the heat
transfer ; (b) experimental determination of the said diffusivity.

The work is divided into two main parts, experimental and theoretical. In the experimental part, the
effective thermal diffusivity values are obtained by means of a fluidized bed test apparatus. The obtained
values fit the semi-empirical correlation developed later in our theoretical analysis
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where Re* is a Reynolds number based on the particle’s diameter and the root mean square fluctuation
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C is a proportionality factor. By plotting the test data it is found that C = 5320. The test data fit the above
equation with a standard deviation + 34 per cent.

In the theoretical part of work, an analysis of the heat transfer caused by particle mixing is performed
by means of the theory of stochastic processes. It is shown that with certain simplifying assumptions the
heat transfer process becomes a Wiener process. From the theory of Wiener processes it is found that the
effective thermal diffusivity of fluidized bed is a function of the mean kinetic energy of particle and the
heat-transfer coefficient. To complete the analysis, the expressions of the mean kinetic energy of particle
and the heat transfer coefficient are developed. Both expressions in conjunction with the theory of Wiener

processes produce the semi-empirical correlation shown above,

NOMENCLATURE D, column diameter; drag in equation
A, particle surface ; (75);
a, constant ; d, particle diameter ;
b, constant ; E energy of particle ;
C, empirical constant ; F, stochastic function ;
c, specific heat: f, function ; friction factor in equation
Cps drag coefficient ; (53);
G, flow rate ;
t This research was carried out under the supervision of o . ate; .
Prof. A. Kogan at the Department of Aeronautical engineer- 9 gravity constant;
ing, Technion—Israel Institute of Technology, in a partial H, ho]dup;
folfilment for the D.Sc degree. _ fant -
1 Present address: University of the Negev, Beer-Sheva, },l’ heat-transfer coefficient ;
Israel. iR Colburn factor ;

835



836 E. ZAHAVI
K, stochastic function ; f fluid :
k, thermal conductivity; constant in i, space direction :
equation (8); Js space direction :
L. length of test tube ; L, location x = L:
. length ; constant in equation (8): m, molecular:
m, mass of particle : s. solid :
N, number of particles ; v, test reading ;
P, force : 0. location x = 0;
p. probability function; pressure in slip velocity (u, only);
equations (76) (78); 1,2,3, spacedirections:locations.
S. sum of squares: stochastic function
inequation (6) Other symbols
T. temperature : - (overbar)mean ;
L time ; ~, superficial ;
U. velocity in Lagrangian system : (prime) derivative; fluctuation (T"
u, velocity ; and v only):
V. volume of particle: ¥ volume of * (asterisk) as defined in equation (89).
fluidized bed : Bold symbols indentify vectors.
W, weight ;
X, coordinate in Lagrangian system ;
X, coordinate. 1. INTRODUCTION
FLUIDIZED beds by their very nature make ideal
Greek symbols heat exghangers. They possess large heat-transfer
o friction factor : area, high _heat ex_change effectiveness, angi a
" factor defined by equation (64): simple design whph keeps the con'strl.lctlon
5 dissipation length ; §, Kolmogorov’s costs low. All qf this enhances the application of
microscale : fluidized beds in heat exchange processes of the
. void fraction - chemical industry and make the ﬂui.di_zed beds
X, thermal diffusivity - a technological success. Now the fluidized beds
v, kinematic viscosity - are looked upon as a possi_ble solutiqn.to _the
o density : problem of heat recovery in _ﬂash d1§t111at10n
o, specific particle surface : plant_s. The first attempts in thls.dfrectlon were
é. stochastic function : function in equa- restricted to the hquld—l'xqul.d ﬂl.udlzed b_ed hegt
tion (1) exchangers. A new apphcatlgn is undc;r dmlvesn(-i
ffusivi ation in this faculty which uses solid-liqui
o diffusivity. ﬁuidized beds (see [1]).
. . The new heat exchanger comprises a counter-
Dimensionless groups current  solid—water fluidized bed. Its
Nu, Nusselt number : development depends upon the knowledge of
Pr, Prandtl number : the solid—fluid heat transfer. Now the available
Re. Reynolds number. heat-transfer information in this field could not
be used because the data obtained by the
Subscripts previous investigators were in conflict. Dis-
a, solidsin hopper 1: crepancies of published data and inconsistent
B, fluidized bed ; explanations of the heat-transfer mechanism
eff. effective ; prompted the present research.
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The following two objectives constitute the
subject of this work : (a), to understand the heat-
transfer mechanism in a fluidized bed ; and (b},
by experimental means to obtain the necessary
heat transfer parameter. The work is divided
into two parts, experimental and theoretical.
In the experimental part we obtain the necessary
heat transfer parameters. In the theoretical
part the mechanism of heat transfer in fluidized
bed is explained. For the reader’s convenience,
the present paper comprises three main sections :
first, the state of art of fluidized beds, described
in Section 2; second, our experimental methods,
described in Section 3; third, the theoretical
investigation, described in Sections 4 and 5. In
addition, in Section 6 our results are compared
with those of others,

2. STATE OF ART

To understand the heat transfer between
fluidized particles and fluid. one has to know the
state of the fluidized bed as a whole as well as
the fluid flow past the individual particles. The
following three subsections (2.1-2.3) show the
existing state of art in literature prior to the
publication of the present study.

2.1 Fluidized bed

Two fundamental approaches are shown in
the literature on this subject {2, 3], both are
inter-related. We shall analyze [2] first. Consider
a fluidized bed where the solid particles are
suspended by fluid stream. It is evident that void
fraction ¢ or the frequently used holdupH=1—¢
depends upon the fluid rate which suspends the
particles. An increase in the fluid rate will
decrease the holdup and vice versa, If we intro-
duce the slip velocity u, which is the mean
velocity through the voids, this dependence can
be expressed as

H=1-¢=¢(u) (1)

where ¢(u,) means a function of u,. The function
depends upon the properties of fluid and solids
and is being determined experimentally. Figure
1 shows a typical function ¢(u,) taken from [4].
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Consider a fluidized bed contained in a
vertical column where the bulk of particles is no
longer suspended but flows downward with the
mean velocity u,, and the fluid flows upward
with the velocity u,. Assume the upward direc-
tionas positive,i.e.u, > 0and u, < 0. Evidently,
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FiG. 1. Holdup vs. slip velocity.

The fluid flux, the so called superficial fluid
velocity, will be

Similarly, the superficial solid velocity will be

f, = (1 — &, 4)
Hence we can express
i, i
= 5
Mo = T ©)

The equations (1) and (5) predict the holdup
H =1 — gifthe fluid and solid fluxes are known,
The equations are not restricted to the counter-
current operation described above, but may be
applied to any combination of i, and i, whether
positive, negative or zero.

Likewise the approach explained above [3]
presents another, similar approach of the fluid-
ized bed behavior, with the main difference
being that the holdup H is presented as a func-
tion of .
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2.2. Particle motion

The motron of the individual particle is
random and does not lend itself easily into
mathematical form. Here the research is more
difficult and the publications less numerous. The
information found in the literature is reviewed
below.

Furukawa and Ohmae [5] compared the
fluidized particles to liquid molecules and
described the behavior of particles in terms of
mean kinetic energy of particle. The authors
measured the effective viscosity in gas fluidized
beds and. basing on the molecular analogy.
obtained an empirical correlation for the kinetic
energy.

Ruckenstein [6] has considered the limiting
case of incipient fluidization and represented the
fluidized bed by a fixed lattice model where the
solid particles oscillate about the fixed equi-
librium position. This mode] is based on the
analogy to the molecular behavior of solids.
Ruckenstein derives a correlation for the diffu-
sivity of fluid phase of the fluidized bed and
compares it with the experimental data of
others.

A more general approach was chosen by
Houghton [7], whose analysis was not restric-
ted as that of Furukawa et al. to gas fluidized
beds. or as that of Ruckenstein to incipient
fluidization. Therefore it deserves more atten-
tion. Houghton suggested a theoretical model of
the particle motion which is equivalent to the
Brownian motion, with the difference that the
particle motion is anisotropic. He described the
particle motion by means of the Langevin
equation in three space directions

i + o; = Si{t) (6)
dt

where o, is a constant factor and S(t) a stochastic
term. He considered in his analysis the buoyancy
forces and the mean fluid motion which exist
in the vertical direction only, thus, making the
particle motion anisotropic. The solution of (6)
produces the particle diffusivity
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K = ?:5 0]
mo;
where E, is the mean energy of particle and m
the mass. Unfortunately. Houghton did not
produce any valid expression of mean energy
E | which renders his work incomplete.

2.3. Heat transfer
Consider the heat transfer to the single
particle first. Here we have [8]

Nu = a + bRe"Pr! 8)

where a. b, k and | are empirical constants, [8]
lists the constants as determined by various
investigators. For the flow conditions which
apply in our case, we have

azx=?20
b= 04-10
k=05

! = 033

(9)

Now if consider the the fluidized bed as a
whole, the apparent random motion of fluidized
particles introduces a considerable complexity
into the heat-transfer picture. The fluid in
fluidized bed has a temperature gradient as a
result of the occurring heat exchange and the
bulk motion of particles and fluid. The random
motion of particles, being superimposed upon
the fluid-temperature field, causes an irregular
temperature—time pattern in the particle’s am-
bient state; whereby the particle acts as a heat
source or heat sink at random.

Amundson and Aris [9] analyzed this phe-
nomenon on a statistical basis using a prob-
ability function for particles’ distribution.
Because of mathematical complexity, their solu-
tion is applicable to specific and limited cases
only.

Bartin his study of gas fluidized beds described
the mixing behavior of fluidized particles in
terms of an effective diffusivity similar to the
theory of turbulent flow (see [10]). His approach
was followed by Donnadieu [11], Lewis et al.
[12], and Borodulya and Tamarin {13], who
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measured the effective thermal diffusivity caused
by the particle mixing of gas fluidized beds.
Thus, there exist two pertinent heat-transfer
modes in a fluidized bed: first, convective heat
transfer between points of the bed caused by the
particle mixing and second, heat transfer between
particles and fluid reviewed before. Donnadieu
[14] and Littman and Barile [15] showed this
by writing the energy conservation equation for
the solid and fluid phases in the form

3T,  OT\  o°T,
(1- S)Pscs<5t— + "Sax> - ksW
+ho(T, = T)=0  (10)
0T, oT,

where k; is an effective conductivity caused by
particle mixing, A the particle-fluid heat transfer
coefficient, p density, ¢ specific heat, and o the
specific particle surface defined by

1—c¢
i
Now a serious question is being raised as to
the validity of equation (11). It was noted [16]
that the random mixing of solids in fluidized
beds induces a similar mixing of fluid. Cairns
and Prausnitz [17] measured this mixing in
terms of diffusivity and found it to be affected
by holdup. This implies that an additional
conductivity term is needed in equation (11)
which now becomes

oT,  oT; 82T,
W(W * “fﬁ?) s
+ho(T, - T)=0. (13)

Equation (10) and (13) form a system of
partial differential equations which describe the
temperature field in a fluidized bedf. To solve
it, one has to know the heat-transfer parameters
h, ks and k ;. Toward this end we reviewed more
than twenty papers and abstracts to learn the

c=6 (12)

+ Analogous equations exist for the y and z directions.

839

parameters obtained by students of fluidized
beds. [10, 18, 19, 40] present summarized
reviews of the existing state of art.

The h values are of particular interest to us.
They vary considerably from one investigator
to another. This discrepancy of test results is
best illustrated in a comparison study of Barker
[19]. The results of his study are summarized
in Fig. 2 which is taken from his paper. In the
figure the heat-transfer coefficients obtained
by different investigators are shown in the non-
dimensional form of a Colburn factor

Nu

= Re P (14)

J
The indicated Reynolds number is based upon
the particle diameter d and slip velocity u,. As
seen in the figure, the test results differ by an
enormous factor of 10000 (for a comparison we
included a curve for a single sphere). Barker
attributed the disagreement of test data to the
shortcomings in technique of the individual
investigators and to the differences between
fluidized beds and conditions during the experi-
ments. The majority of investigators used air as
the working fluid. A few investigators used
helium, argon, carbon dioxide or water. Most
of them used different size particles, materials,
and bed dimension. A majority considered the
particle-to-fluid heat transfer to be predomi-
nant in fluidized beds, disregarding the heat
exchange caused by particle mixing. Other
investigators assumed the heat exchange caused
by mixing to be infinite which again does not
suit our purpose.

Analyzing the published heat-transfer data
we found the following: In gas fluidized beds
the volumetric heat capacity of the solids is of
the order of about 1000 times that of the gas.
Because of this, the gas rapidly attains the
temperature of the solids and the heat transfer
process is restricted to a narrow zone near the
gas entrance to the bed. However, in liquid
fluidized beds the heat capacities of the liquid
and solid are of the same order of magnitude
and the heat transfer occurs in the entire bed.
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Thus there exists a specific dissimilarity between
heat transfer processes in liquid and gas fluidized
beds which could eventually account for some
of the discrepancy of test data. To date, only two
papers have been published on the subject of
heat transfer in water fluidized beds [20, 21].
Because of our interest in water fluidized beds,
we shall consider them separately.

Holman et al. [20] used a steady state method
in which stainless steel and lead spheres were
fluidized in water and heated by induction
heating. The diameter of particles was 1-6—

48 mm, the diameter of test column 51 mm.

Thermocouples were used to measure the water
temperature at the entrance and the exit to the
bed and water rate was measured with a flow-
meter. In their evaluation of h the authors
neglected to take into consideration the heat
transfer caused by mixing of solids or fluid, i.e.
they assumed

(15)

The results were correlated by means of the
equation

0-5 2
Nu =307.10"% Re? Pr”(?) (&)
Ps

x[1-1-&.22.8/"2% (6

where D is the column diameter, and Re is
based upon particle diameter d and slip velocity
Ug.

Sunkoori and Kaparthi [21] performed tran-
sient heat transfer tests with granite and quartz
particles of 05 and 1-1'mm dia. A batch of hot
particles was dropped into an upward stream
of cold water and the temperature of water
leaving the bed was recorded as a function of
time. The authors evaluated h assuming there
were no temperature gradients in the fluidized
bed, which means

ky =k, = 0. (17)
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They correlated their results with the formula

Nu = 000391 Re?! (18)

where Re has the same meaning as before. The
authors predicted by means of their theory an
exponential temperature distribution vs. time,
a fact which contradicts the test data presented
in the paper. They seem to have failed to
present a valid explanation of this discrepancy.

In view of the above described contradictory
information obtained on the heat-transfer data,
the analysis of Mixon et al. [22] is of consider-
able interest in that it offers a valid explanation
to the found discrepancies. Although intended
for use in the liquid-liquid fluidized beds, it is
applicable here. Mixon et al. start by discussing
the heat-transfer coefficients h. These should be
equal, within an order of magnitude, to the
accepted heat transfer coefficients of single
spheres, as expressed by our quation (8). Now,
if one applies the accepted heat-transfer co-
efficients to the fluidized beds under considera-
tion, one finds them sufficiently high to make the
temperature difference AT= T, — T, in any
place negligibly small when compared with the
temperature drop along the column’s axis. This
applies, as shown by Mixon et al., to fluidized
beds with column length exceeding the particle
sizes by two orders of magnitude or more.t
Thus, in the case under consideration, there is

only a single temperature
T,=T, =T (19)

Its differential equation for steady state, as
derived by Mixon et al. equals

1 For benefit of the reader who is interested in quantita-
tive data, it should be noted that for a typical solid-liquid
fluidized bed the Nusselt number based upon particle
diameter is of the order of 10 which makes AT to be about
0-5°C or less (for detailed analysis of AT, see [22]). This is
negligibly small when compared to the temperature drop
along the column which is of the order of two decades
higher, see for instance Fig. 4, our typical test data.

841
dT
(A — e)psesus + epcpup] P

T .
— (ks + kf)5x7 =0 (20)
It corresponds to our system of equations (10)
and (13).

The expounded theory shows that it is neces-
sary to know the effective terms k, + k in order
to be able to determine the temperatures in
fluidized bed, and the exact knowledge of the
heat-transfer coefficient h is irrelevant as long
as it equals or exceeds the h value for a single
sphere. It also proves the h values obtained by
previous investigators to be substantially in-
accurate: erroneous evaluation methods were
used assuming either k; =k, = co ork, =k, = 0.
This explains the apparent paradox of Fig, 2
that the fluidized particles seem to possess lower
heat-transfer coefficients than the single spheres.

The present review will be incomplete without
mentioning the work of Letan and Kehat [23].
They produced experimental heat transfer data
obtained in counter-current liquid-liquid fluid-
ized beds (spray towers). Also here was shown
analytically that the heat-transfer coefficient h
is irrelevant to the heat-transfer analysis of
fluidized beds. The results could not be applied
to the present study because of the different
type of fluidized beds used.

In all, we have reviewed the heat-transfer
data in three kinds of beds: solid-liquid,
solid—gas and liquid-liquid. We were unable to
find effective conductivity values for use in our
design of a solid—water fluidized bed heat
exchanger. Therefore, we started our own
experimental program.

3. EXPERIMENTAL METHODS

3.1. Test apparatus

A counter-current fluidized bed apparatus was
built on laboratory scale to obtain the needed
heat-transfer data. The test apparatus was so
designed as to create solid—water fluidized beds
where temperatures and solid and fluid fluxes
were to be identical with an industrial heat
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exchanger unit. Figure 3 shows the test appara-
tus. The essential part is the vertical test tube 4
which contains the fluidized bed and where the
heat transfer process takes place. The test tube is
made of glass or Perspex which provides a
visual aid in observing the fluidized bed. Its
internal diameter and length can be varied.

T-3

=

|

‘Or—T—4

F1G. 3. Test apparatus.

Two counter-current streams pass through the
test tube: an upward stream of hot water and
downward stream of cold solids. The flow of
solids originates in the hopper 1. From here the
solids flow through the control orifice 2 into
the test tube and then, through the bottom pipe
S, into the storage vessel 6. The hot water comes
from the pressurized water heater 10 and is
delivered through the supply line 8 into the

E. ZAHAVI

lower part of test tube 4. Before it enters the test
tube, it passes through the filter 9 whose function
is to guard against penetration of fluidized solids
into the supply line 8. After passing the test
tube, the water gets into the overflow container
3 from where it is disposed by means of the dis-
charge line 7. There is an additional discharge
line 11, whereby water is discharged from vessel
6 while the vessel is being filled with solids. The
control orifice 2 is provided with a slide valve
which permits a sudden opening or closing of
the orifice. 12 is a recirculation pump which is
used during the preparation prior to the tests.

The following measuring devices are used in
the test apparatus. The holdup is measured
by means of the pressure differential gauge
P-1. T-1 to T-14 are thermocouples: T-1
measures the temperature of dry solids, T-2 the
temperature of entering water, T-3 to T-14 the
temperature of bed. F-1 and F-2 are two sets
of flowmeters. The flow rate of water is controlled
by means of needle valves located next to the
flowmeters. The flow of solids is controlled by
the orifice 2 which is calibrated prior to the test.
The flow rate of water through the discharge
line 11 is set equal to the flow rate of solids
through the orifice 2.

The length of the test tube was varied between
74 cm and 235 cm. The diameter was either
24 mm or 44 mm. The solids were glass spheres,
0-33, 0-71 and 30 mm dia. and steel spheres,
0-91 mm dia. (their properties are given in Table
1). The holdups were 4-25 per cent. Only
counter-current operations were performed with
the solid and fluid fluxes so adjusted that

Gscs =1

1
Gye, (21)

where G, and G, are the solid and fluid rates in
kg/min and c¢; and ¢, the specific heats. The
latter condition was chosen because of its
industrial application.

Table 2 shows the test readings with all the
pertinent test data. The thermocouple locations
X, X1, X5, €tc., refer to their positions as measured
from the bottom of test tube 4. The temperature
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Table 1. Properties of solids

Material Glass Glass Steel Glass
Diameter, mm 0-25—0-40 0-59—0-84 0-84—10 39
{
Spec, heat, & 0210 0209 0118 0214
gt
Spec. gravity, - 251 248 7.85 246
cm
Supplier Metal Improvement Co. N.J. E.T.E. Salvadory
France
readings Ty, T;, T,, etc., correspond to the u dT . ar 0 »
respective thermocouple locations. Figure 4 °ff 4x ff 42 (22)

shows temperature readings of a typical test.

60—
\\
50— ©
A
AN
N
O\\
o 40(— 0\0
e
% N
N
30—
20
10 L ] | |

0O 20 40 60 80 100
X, cm
F1G. 4. Typical temperature readings.

3.2. Datareduction

Here we use the differential equation (20)
obtained by Mixon et al. With some modifica-
tions it becomes

where u. is an effective velocity term defined by
the equation
(1— e)pscus + epcug

(1 - s)pscc + EPsCy

Ueer =

and k. is the effective diffusivity defined by
ks — k,

= . (4
(1 - s)pscs + PsCy )

Ker

In the case under consideration we have u. = 0
as a consequence of condition (21). Because of
this, equation (22) changes into

dar

— =0,

dx? (25)
x is measured from the bottom of test tube 4
upward. The boundary conditions which apply
hereare

T=T, when x=0 (26)
nD? dT .
— kit k)q=—Ge(T-T)
when x =1L 27

where L is the length of the test tube and T, the
temperature of solids in hopper 1. With this the
solution of the differential equation (25) will be

T=T,—(T,-T).p.1 (28)
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m

where T; is the bed temperature at x = Land
Bis defined by the equation S = Z(ATv)2 =

1

= 2
Z {T - [To ~ (T, - nm’—}]} (1)
From the test we get temperature readings 1

To, T, and T, (v =1,2,...) where T, values yhere m is the number of temperature readings.

correspond to .thermocogples’ locations X,. Qe finds the values of 8, Ty, T by solving the
Upon insertion into equation (28), they should  gygtem of equations

produce f which then can be used to evaluate
ks + k;. But the actual value T;, T; and T,

_ GelL 4
~ ky+ k; nD¥

B (29)

deviate from equation (28), because of instru- os 0 (32)
mentation errors and discrepancy between the op
idealized theory and experiments. Because of a5
this, the last squares method is used to evaluate 2 -0 (33)
B. Ty
100 000
80000}
600001
.
- L]
4000O>’
L N 5320 Re*025
o (e}
Q 4a
[0l Y A‘
> 9 20000 o
sle o8 Zo =4
5’ |>‘ cQ AL 4 a
o]
® 0,°
10000 008’ o Glass 0-335 mm dia.
8000} 0© . 4 Glass O-715 mm dia.
® Glass 3-0  mm dia.
6000} 4 Steel 0-915 mm dia.
4000 1 1 1 L L L L 1 i
[e] 40 60 80 100 200 400 800 800 000 2000
Re*
FI1G. 5. Test results.
The deviation of T, from its theoretical value and
is s
S
X, 3T = 0. (34)
AL =T - | -(T.-T).8.| (30) T,

This we did by method of function minimization
The sum of squares of AT, equals of Regev [24].
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3.3. Testresults

We plotted our test results to indicate the
trend. Once the results fell into an accepted
range, we proceeded to develop a theoretical
model to explain this trend. The theoretical
model is described in Sections 4 and 5. The final
formulais

PsCs Re*0'25

Kett _
= P05

Ve pfc Pr

(35)

where the Reynolds number Re* is defined by
equation (89). C is a proportionality constant,
the value of which was the missing link in our
model. By fitting the test data and using the
least squares method it was found that

C = 5320. (36)

Figure 5 shows graphically the relation
between the test data and the above formula.
The standard deviation of the scatter was calcu-
lated and found to be 4 34 per cent.

4. DIFFUSION OF HEAT IN A FLUIDIZED BED

Our theoretical model aims to explain the
nature of effective conduction in fluidized beds.
Mixon et al. [22] showed successfully this
phenomenon to be predominant in heat trans-
fer in fluidized beds, but did not give sufficient
theory. Our theoretical explanation follows.

The conduction is a result of the solid mixing
which resembles the eddy motion of turbulent
fluid flow. This resemblance is especially evident
visually to an observer of fluidized bed in motion.
We follow the methods of the theory of turbulent
flow to determine this conduction. For simplifi-
cation’s sake, we accept the “perfectly mixed
drop” model of fluidized particles, i.e. we assume
the conductivity of particle material to be
infinite and the particles do not possess internal
temperature gradients. As for the fluid, we
ignore its molecular diffusion: the latter is
negligible when compared to the turbulent
diffusion.

847

We express the velocities and temperatures
in fluidized bed by means of the sums of the
mean values and the fluctuation terms, i.e.

U, ; = D:,i + u; ; 37
u,yi='&;,i+u’,,i (38)
=T, +T, (39)
=T +T; (40)

where index i denotes the space directions, and
s and f designate the solid and fluid respectively.
u,,;and u, ; are vectors. Any part of the fluidized
bed is subject to the energy conservation law.
In the form known to the reader from the
turbulent theory, it becomes

oT, — 0T, @
(1 - 8)ps sl:a + Uy, 16 E(Tsu's,i]
0T — 6T
+8prf|:a + ug; 6 (Tfuf)] =0 (41)

where the respective values p, ¢ and u are
assumed to be constant. In writing equation
(41) we use the summation convention whereby
repeated subscripts mean summation. Equation
(41) expresses our view that the heat exchange
takes place by means of convection only and the
molecular diffusion of fluid is ignored.

Several simplifications are in order before we
proceed with the analysis of (41). First, we
assume the difference AT= T, ~ T} to be very
small when compared to the measurable tem-
perature differences between various points of
fluidized bed. This subject was discussed at
length by Mixon et al. [22] who showed this to
be so in industrial fluidized bed, i.. if T, and T
and their first space- and time-derivatives are
continuous and monotonous functions of x;
and ¢ which we expect them to be, the deriva-
tives of AT will be negligibly small and one can
write

D
-3
QD
=
=~

|
n

(42)

D
&
D
B
D
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and
oT, _oT, _ o
ox; ~ dx; 0O,

skipping the index s and f for brevity. Consider
now the vectors T ; and Tju} . Both have
the character of a heat flux. Consider T,
first. It represents a heat flux caused by particle
mixing. Following the methods of Boussinesq
[25] and Schmidt [26]. we make the assumption
that it is proportional to the mean temperature
gradient, i.e.

(43)

(44)

where k, is a proportionality constant. The con-
stant, of course, may differ in each direction x,,
thus the general form will be

. oT
s 4 ox;

where K ;;is a tensor. As for T'u/ ,, it represents
the heat flux caused by fluid mixing. Here

(45)

oT

Tfuf,= ~—rcf.,-j5; (46)
I

where x, ;; is another constant tensor. Combin-
ing equations (41) and (46) we obtain

oT
[ — e, + epsesl o+ (1 - BIFIT

- [ -

+ &p fcfu 1. ;] E)PSCiks, ij
o°T
+ Eprfo’ij]a—‘_x. ax‘ = 0. (47)
X; 0x;

It is equivalent to equation (20) which was
derived formerly by Mixon et al. Upon putting

T — (1 — oy, + epscsiiy ;i
oA ! (1 - s)pscs + EPsCy

(48)

and

(1 - g)pscsxs,ij + spfcfkf, ij

o= 49
Fett, i (1 — e)pses + epycy “9)
we finally obtain

oT - 0T o*T
Fri ueff,iaTCi — Kefg, i 0%, 0. (50

The latter is the thermal diffusion equation of
fluidized bed.

Because of its importance to heat-transfer
analysis, equation (50) deserved more attention.
The mean temperature T can be expressed by
means of the probability function p(x,t). It
can be shown (see the next chapter) that equa-
tion (50)is equivalent to

o%p(x, 1)
RULIP I P

op(x, t) op(x, t)
EY + ueff,i__a__xi

(51

Now the latter is a particular form of the Kolmo-
gorov's forward equation of stochastic processes.
Consequently we can consider the heat-transfer
process in fluidized bed as a Weiner process.

Here we refer to the Houghton paper [7].
Houghton was the first to suggest a Wiener
process model for fluidized beds. Although he
considered the particles’ motion and not the
heat transfer, some of his results also apply here.
In the next chapter we shall derive the effective
diffusivity from the existing solution of Wiener
processes.

5. EFFECTIVE DIFFUSIVITY

We consider the heat-transfer process of a
single particle. With certain simplifying assump-
tions it becomes a Wiener process. From the
theory of Wiener processes we will find the
effective diffusivity to be a function of the mean
kinetic energy of particle and the heat-transfer
coefficient. In what follows, we shall develop
the expressions for the kinetic energy and the
heat transfer coefficient, and apply it to obtain
the correlation of the effective diffusivity.
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5.1. The Wiener process
We observe the random behavior of fluidized
particles using the Lagrangian system, i.c. we
mark each particle by means of parameter
x = (x3, X5, X3) and follow the particle along the
coordinates X = (X,, X,, X ;) and ¢. Parameter
x is the position of particle at time ¢t = t,. The
particle’s velocity in Lagrangian term is
Ux,t) = 2X(x, 0. (52)
ot
As shown by Houghton [7], the behavior of
an individual particle can be described approxi-
mately by the Langevin equation

d2
"z

where m is the particle’s mass, f a friction factor
and F(t) a stochastic term. To circumvent the
difficulties impending the solution of equation
(53) and described at length by Houghton, we
make several simplifying assumptions at the
expense of accuracy. The assumptions are:
first, say that the fluidized bed is isotropic, and
neglect the influence of walls and buoyancy;
second, we assume equipartition of energy;
third, we say that the collision process is purely
random. The third assumption means that

F+ f = Fi{1) (53)

F{OF{s)=0 when t#s (54)
and
F{t F{s) = const.
=2mE when t=s (55)

where E is the mean energy of particle (see
[27]-{29]). In conjunction with the above
assumptions, the behavior of fluidized particles
can be explained by means of the theory of
Brownian motion.

Consider the heat transfer in the light of the
explained particle behavior. The heat balance
can be described by the differential equation

Vo, ddT + AWT, - T)) = (56)

849

where Vis the volume of the particle and A its
surface. As will be explained later in subsection
5.3, the heat transfer takes place by means of
heat dissipation eddies. The thickness of the
thermal boundary layer surrounding the particle
corresponds to the size of the eddies. Outside
the boundary layer the heat is already dissipated
and the temperature is substantially uniform,
ie. equal T;. In view of this, the above equation
has to be corrected to read

VoeSE 4 AT - Ty=0.  (56)

By differentiating the latter in respect to time
and expressing T, in terms of its mean and fluc-
tuation components, one obtains

d*T; dT, d?T,
Vpssdz + Ah—— dt —Vpscs'afs

d -
~ Az (T-T).  (57)

Here, the last right term equals zero by virtue of
(42) and (43). The remaining term equals

T, d dT)
- Vpscs dtz dt( Vps S d K(t) (58)

where K'(t) denotes the time derivative
d
— t
< [K(0)

From here we obtain the Langevin equation

27 ’
— Vpc sdd'l; + Ahc—iaz—

Function K(t) is stochastic because it depends
upon the random particle motion. In the
fluidized bed under consideration, during the
steady state, the mean temperature gradient is
constant because of the precondition (21).
During the transient condition, even that the
error is about +1 per cent, we still take it as
a constant. This makes K(t) equal

dT; dT, dx
Vps s dl - Vpscsd_X—'—d—t—i

dT,
= - Vps SdX

= K'(¢). 59)

K(t) =

U, (60)
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and its correlation function equal dT,

’ ' e pX.0) = p(T,0). | (6
K({OK(s)=0 when t#s (61)  gee [31].

and Now consider T, and X; as defined by the
dT, \? equations (53) and (59) respectively. Between
K(K(s) = (Vps Cs dX) .U;? = const. collisions, the stochastic terms F'(t) and K'(t)
| . L o
when = s. 62) equal zero and both equations are similar e.g

Equations (59), (61) and (62) make the heat
transfer a Wiener process.

As a result of all that has been considered up
to now, we see that the particle motion and
particle heat transfer both are expressed by the
same Langevin equations (53) and (59), and both
can be classified as Wiener processes. Therefore
we propose by means of the existing Wiener
process solutions to solve the heat-transfer
problem.

Equation (59) can be brought into the more
convenient form

2T,  dT,
a2 T &'(t) (63)
where
Ah
Y= 7 (64)
and
K’t
$0) =21 (65)

svs

Its approximate solution, as shown in [30], is
the Gaussian probability function

T;2>

prorg S )

1
T t)=—— -
ML ———
where y is the diffusivity factor defined by

1= (67)

dT; .
d) U (dT;)Z
y ¥ ax,)
Now the object of the present analysis is the

probability function p(x, ) which we get from
(66) by means of the transformation

T. and X, are both exponental functions of ¢
with their respective exponents proportional to
the heat transfer factor Ah and the friction
factor f. Following the Reynolds analogy, we
assume the friction mechanism and the heat
transfer of the particle to be equivalent. The
assumption implies that Ah is proportional to f
and

1

£ = const.
dX;

Consequently, if x is the particle location at the
initial time t =z, the probability function
(X | x, t) will have the Gaussian distribution}

pX,t) = pX|x, 1)

1 (X; — x))
= g exp |: e :| {70)

where « is the diffusivity factor
U7 _ Vpe, 2E

T T AR m

(69)

(71)

(X |x, t) satisfies the Kolmogorov's forward

equation
ip(X|x t)—x—ﬁ—p(Xl t)=0 12)
Pl axzpAien = ‘

If we express the mean temperature T(X,t) by

means of p(X|x, t) so that

+w
T(X,t) = | T, (73)
we find that equation (72) is equivalent to
oT o*T
a — K a—)(—‘z— = 0. (74)

1 As follows from equations (66), (68) and (69).
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The details of this are given in Appendix.

Returning to equation (71), the diffusivity
factor k is a function of mean energy E and heat-
transfer coefficient h. In the following sub-
sections we shall derive the expressions for E
and h.

5.2. Mean energy of particle

We assume the fluidized bed to be isotropic,
the energy of the particles to be subject to
equipartition law and the particles to be spheri-
cal.

Each particle is subject to fluctuating forces
which comprise weight, drag, and collision
forces. The first is constant, the other two are
random. The mean resultant of all forces equals

_ nd? nd*  u}
P—W+D—’—6 (Ps“Pf)"‘CD—4 sz—g
(75)

where W is the particle’s weight in fluid, D the
drag, cp the drag coefficient and u, the slip
velocity (the mean collision force equals zero,
hence, it is dropped from the equation).

The mean energy of particle equals

E=PVB

N (76)
where p is the pressure, V5 the volume of fluid-
ized bed, N the number of particles in volume
V3. Since the pressure is statistically independent
of V/N, equation (76) becomes

__VB— - nd®. 1
E-P(Tv‘)- R
The mean pressure is
nd® - nd*  u}
P _EPTROT Ny
P n& |
4 4

From here the mean kinetic energy equals

nd® nd:  ui| 2 d
E='["6—(Ps—l’i)—chPffé 3 1-¢
(79

The latter equation is considerably simplified
if we use the empirical correlation which we
derived from the tests of Withelm and Kwauk
[32]. Wilhelm and Kwauk made a thorough
investigation of fluidized beds in 7-5 and 15 cm
dia. columns. The solids were spherical particles
of sand, glass, silicate catalyst and lead, ranging
from 0'3 to 5 mm dia. Fluids were air and water.
To suit our purpose, we confined the evaluation
of their tests to water fluidized beds only. Upon
plotting the test data as shown in Fig. 6, we
obtained the empirical correlation

n:da( —p)—c n_d u}
6 Ps — Py Dy Pr:,_;
nd?
= 11—6—(Ps - pf)(l - 8)0'33 (80)

where the ¢;, values correspond to single spheres.
Equation (80) simplifies our expression of E.
Combined with (79), it produces
= nd?
E =0734—(p, — e
6 (ps pf) (1 . 8)0.67

From equation (81) one can obtain the root
mean square of the fluctuation velocity of the
particle. It equals

ENE

d 0-5 0-5
- 1~21(—1(i_?8)(T33 (1 - &> = (JuD. (82)

81)

Ps

5.3. The heat-transfer coefficient

In analyzing the heat transfer to fluidized
particles, most authors assume the interestitial
flow to be laminar in character and independent
of time. The analysis is based upon an assumed
steady state velocity profile in the fluid. Con-
trary to these assumptions, experience has
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F1G. 6. Mean particle force vs. holdup.

shown the flow to be of fluctuating character
and filled with turbulent eddies. Hence the old
theories prove to be inadequate and one must
turn to new phenomenological theories when
calculating the heat transfer to the fluctuating
particles.

[33] lists several phenomenological theories
that are applicable to the turbulent flow under
consideration. The most suitable is the penetra-
tion theory which was first introduced in [34]
and [35]. The theory assumes the turbulent
eddies to penetrate the liquid film surrounding
the solid body.

From the above, a physical model is derived
that is based on the following assumptions.
First, the flow ambient to the particleis turbulent
and the turbulent motion reaches the particle’s
surface. Second, the turbulence is isotropic. The
latter assumption, i.e. isotropic turbulence near
the wall, is made to utilize the existing correla-
tions deduced for the isotropic turbulent flow
from the statistical theory. It is done in similar
analyses, as for example in [36]. (The validity
of correlations in the vicinity of wall that were
derived for isotropic turbulence—e.g. the Kol-
mogorov’s 2/3 law—was confirmed experi-

mentally by others. Such validity is, of course, of
empirical nature only, since the correlations
were derived assuming complete isotropy.)

We use Kolmogorov’s 2/3 law of isotropic
turbulence as applied to the heat dissipation.
The latter application was demonstrated by
Yaglom [37] who applied it to the temperature
field of isotropic turbulence and obtained the
2/3 temperature law

[T(x+ ) —Tx))*~ 1} (83)

where the left hand term represents the second
order temperature moment and ! is the distance
between observed temperature fluctuations.
Obukhov [38] obtained the same result by
non-dimensional reasoning. A direct conse-
quence of this law is the determination of the
heat dissipation length

(Ks )0425 1
5~ —m -
1 (Re.Pr)%73

derived by Obukhov [38], and corresponding
directly to Kolmogorov’s microscale

v3m 0-25 I
b (T) = R

(84)

(85)
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(the index m above means molecular and the
Reynolds number is based on the length I).

The heat-transfer coefficient around the fluid-
ized particle equals

keff

= Ax (86)

where k. is the effective conductivity caused
by heat-transfer eddies (not to be confused with
the effective conductivity of fluidized bed dis-
cussed before) and Ax is the heat absorbing
layer thickness surrounding the particle. Now
Ax ~ 8. We also assume the heat transfer
eddies to equal the viscous dissipation eddies,
ie.

Kot = ;f’—;‘; X Ve = w0 1. 87)
This produces the Nusselt number
hi 1-75
Nu = = const. (Re. Pr) (88)

where both Nu and Re are based upon the eddy
size l. Since the latter varies in a direct propor-
tion to particle size d, the same equation (88)
applies if we replace I by d. The velocity used in
equation (88) is the root mean square of the
particle’s fluctuation velocity (,/u?), so that

Re = Re* = (l/—?l)——‘! (89)
!

Combining the equations (71), (81), (88) and
(89), we obtain the final correlation for the
effective thermal diffusivity of fluidized bed

pcs Re**??

Kert
=C. I
e, P75

Vs

(50)

where C is a proportionality constant to be
determined experimentally. As shown in Section
3, it equals 5320. The correlation fits well into
our test data, as was shown in Section 3. In
Section 6 we make a comparison with the
experimental data of others.
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6. COMPARISON OF OUR RESULTS WITH
OTHERS’ TESTS

From the numerous literature reviewed we
chose to check against equation (90) those
tests that were conducted with water—solid
fluidized beds. The results of the following
investigators were used: Cairns and Prausnitz
[17], Holman et al. [20]f, Letan [39]1 and
Sunkoori and Kaparthi [21]. The results of the
comparison are shown in Fig. 7.

100 000
o ® Holman et a/. A
g ® etan o
4 Sunkoori ef al, o

\ R

T 0T 6 cairns ef of, a ./
[t (6
&l zoooof 5320 A" 02 ]

£ s ®
x'l;‘

10 000}
o
4000 L A i l i
20 40 j00 200 400 1000 2000
Re*

F1G. 7. Correlation of results of present work with test data
of other investigators.

In the figure notice the data of Cairns et al.
The tests are of particular interest because the
subject of research was the mass transfer and
the effective mass conduction, and not the heat
transfer as in the others. As seen in the figure,
the data of Cairns et al. follow the same pattern
which shows that the particle’s heat transfer
and mass transfer are equivalent.

7. CONCLUSIONS

An experimental investigation of heat transfer
in solid-water fluidized beds by means of steady
state tests was conducted. The solids were 0-3—
3-0 mm dia., glass and steel; the holdups were
4-25 per cent. It was found that the experimental
data could be correlated by means of the semi-

1 Our evaluation was based on transient data shown in
the reference.
1 By kind permission of Dr. R. Letan.
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empirical equation, developed later in our
theoretical analysis

l‘_eg__ PCs Re*O-ZS
v, “prey PrO73

where k. is the effective thermal conductivity
of fluidized bed, C an empirical constant, and
Re* Reynolds number, based on the particle’s
diameter and the root mean square fluctuation
velocity defined by equation

(\/_Z) = 121 (gd)o s (1

)0 33°
After plotting the test data, the value C = 5320
was obtained. The experimental data fitted
equation (90) with a standard deviation +34
per cent.

An analysis of the heat transfer caused by
particle mixing was performed by means of the
theory of stochastic processes. Taking the heat
transfer process as a Wiener process and using
the existing solution of the Wiener processes it
was shown that the effective thermal diffusivity
of solid-liquid fluidized bed can be expressed
by equation (90). The derivation of (90) was
facilitated by assuming the fluidized bed to be
isotropic and the kinetic energy of particles to
be subject to equipartition law. Also it was
assumed the fluidized bed to be counter-current
withGye, = Gc.

(90)

s
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APPENDIX
Derivation of Thermal Diffusion Equation

The mean temperature is defined by
+ o
TX,0 = | T(x0.p(X|x,1).dx. (A1)

Its partial time derivative is

+ + o
oT aT, b7}
i fa: .p(X[x,t).dx+ j?}.ap(xlx,t).dx. (A2)
Now

+ o

DT,
2, .d>
j Be pX|x,0).dx,
+ @

the mean value of the derivative following the motion of
the particle temperature, is given by

+w

+w

DT, T, T,
J Br p(X|x,1).dx = j{~67+ U,a—X—i}.p(X|x,t).dx
m+w u0+cn>

- -®

Considering

oT, oT,
j\a.p(x'x,t).dx + j. U%A—,i.p(zﬂx, t).dx. (A.3)
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+
JU‘m p(X|x, ) dx
i vy * X, >
‘0X,
-
we see that using the transformation
+ o
X,
Ulx,t) = | — |. ) ),
J.p( |x, 1) av, p(X|x,2)
it becomes
or, dX"_lu n.p(U d
x| av,| 4x0.p(U|x,1).dx
which is zero, since
o, _ 3T , oT, _
X = ax, + X, = const. (A4)
ax; |
au, = const. (A.S)

and the mean value of the particle velocity following the
motion

T, = TU,(x, 0.p(U|x,1).dx = 0. (A6)

(Note: equation (A.4) follows from the experimental work
described ; equation (A.5) follows from the fact that both
distribution functions, p(X|x, ) and p(U|x, ) are expressed
by equivalent Gaussians, see {30].) Then

+

+ o
oT, DT,
J-a?p(X|x,t)dx— j.—ﬁ?p(Xlx,t)dx (A7)

~®

The heat transfer equation for the particle may be written as

+ w + oo
DT,
j Be pX|xt).dx = —y I(T, —T).pX|x,t).dx
) + o
= - yj T,.p(T:|x,0). 21 dx (A.8)
s0
+ o +
oT, oT,
‘s' X t}). = - ’. . H : . =
jaz p(X|x,t).dx VJTS P(Tix, 1) dx‘ dx =0
(A9)
since T, is a completely random function. Hence
+
67‘_ T, ap(X f).d A.10
P 5 |x,9).dx. (A.10)

-

The second space derivative of T equals
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T P +tx oT where
= = s.p(X'x,t).dx +o + s
80X 0X; )X, a1, @ x d a1, o X d 0
@ Sy ). dx = — . 1) .dx = 0.
- jaxi sx Pl de =20 ax,.jp( [.0). d
X|x,1).dx. A1y " o
6X j ( |x.0). ( This makes (A13)
o + o0
. . L N *T a2
The first right term of this equation is a derivative of a con- o= x,t).dx. (A.14)
stant, hence equals zero. The second right term becomes 0xX; BX

—

The probability function p(X]|x, t) satisfies the equation

+a + o

0 0 T, d 9?
3X, JTs'a—&p(Xlx,t)-dx— Jax X, .1).dx Ep(Xlx,t) k—X?p(Xlx,t) =0. (A.15)
In conjunction with equation (A.10) and (A.14) the latter

to 22 becomes

+ jﬂ.g—p(XIx, t).dx (A.12) T 22T
§ X k= (A.16)

ot Xt

TRANSFERT THERMIQUE DANS DES LITS FLUIDISES LIQUIDES

Résumé—I1 existe deux modes de transfert thermique dans un lit fluidisé: 'un est le transfert thermique
convectif entre des points du lit, causé par le mélange des particules, et 'autre est le transfert thermique
superficiel entre les particules et le fluide. Les deux modes produisent une convection ou une diffusion
thermique effective dans le lit fluidisé. Afin de prédire les températures dans le lit fluidisé, il est nécessaire
de connaitre la diffusivité thermique effective. Les cbjectifs atteints de la présente recherche sont (a) ’explica-
tion théorique du transfert thermique et (b) la détermination expérimentale de la diffusivité mentionnée-
Le travail est divisé en deux parties principales, I'une expérimentale et ’autre théorique. Dans la partie
expérimentale les valeurs de la diffusivité thermique effective sont obtenues au moyen d’un montage a
lit fluidisé. Les valeurs obtenues répondent 4 la corrélation semi-empirique développée dans notre analyse
théorique:
Re* 025

: Pr0'75

Koer - C. PsCs
Vs Pres

ol Re* est un nombre de Reynolds basé¢ sur le diametre de particule et la racine carrée de la moyenne
quadratique de la fluctuation de vitesse définie par I’équation:

) gd)0~5 p‘O-S
(Vu?d) = 121——'8)()—,5.1—;’3 .

C est un facteur de proportionnalité. En reportant sur un graphique les résultats des essais on trouve
C = 5320. Les résultats répondent 4 1'équation ci-dessus avec une déviation standard de + 34 pour cent.

Dans la partie théorique du travail, une analyse du transfert thermique causé par le mélange des par-
ticules est conduite au moyen de la théorie des processus stochastiques. On montre qu’avec certaines
hypothéses simplificatrices le processus du transfert thermique devient un processus de Wiener. A partir
de la théorie des processus de Wiener on trouve que la diffusivité thermique effective du lit fluidisé est
une fonction de I’énergie cinétique moyenne de la particule, et du coefficient de transfert thermique. On
développe, pour compléter I'analyse, les expressions de I'énergie cinétique moyenne de la particule et le
coefficient de transfert thermique. Ces deux expressions en accord avec la théorie des processus de Wiener

conduisent a la corrélation semi-empirique citée auparavant.

WARMEUBERTRAGUNG IN FLUSSIGEN FLIESSBETTEN

Zusammenfassung—Es gibt zweierlei Arten der Warmeiibertragung in Fliessbetten: Einmal die konvektive
Wirmetibertragung zwischen verschiedenen Stellen des Bettes, verursacht durch die Mischbewegungen
zum anderen die Wirmeiibertragung von der Oberfliche der Partikel an das Fluid. Diese zweierlei Arten
ergeben zusammen eine effektive Wirmeleitung oder Diffusion im Fliessbett. Um die Temperaturverteiling
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im Fliessbett vorauszuberechnen, bendtigt man die Kenntnis der effektiven Warmeleitfihigkeit. Die
Ergebnisse der vorliegenden Untersuchung sind:

(a) theoretische Erklirung des Wiarmeiibergangs; (b) experimentelle Bestimmung des effektiven Wirme-
transports.

Die Arbeit gliedert sich in zwei Hauptteile, einen experimentelien und einen theoretischen. Im experi-
mentellen Teil sind Werte des effektiven Wirmetransports mit Hilfe einer Fliessbett-Versuchsapparatur
ermittelt. Diese Werte bestéitigen die halbempirische Beziehung, die im theoretischen Teil abgeleitet wird,

keff £Cs RE*O 23

=l

0,75
vy pscp Pr

wobei Re* eine Reynoldszahl ist, die mit dem Partikeldurchmesser und der Wurzel aus dem mittleren
Geschwindigkeitsquadrat gebildet wird mit

0,5 0.5
Juh =121 iqd))“}_ (1 - &> ;

s

C ist ein Proportionalititsfaktor. Durch Auftragung der Versuchsergebnisse wurde € = 5320 ermittelt.
Die Versuchsergebnisse stimmen mit der obigen Gleichung mit einer Abweichung von <+ 34 Prozent
iiberein.

Im theoretischen Teil der Arbeit wurde eine Analyse des Wiirmetransports, der durch die Partikelbewegung
verursacht wird, mit Hilfe der Theorie der stochastischen Prozesse durchgefiirhrt. Es wird gezeigt, dass mit
cinigen vereinfachenden Annahmen der Vorgang des Wirmetransports zu einem Wiener-Prozess wird.
Ausgehend von der Theorie fiir den Wiener-Prozess ergibt sich, dass der effektive Wirmetransport des
Fliessbettes eine Funktion der mittleren kinetischen Energie der Partikel und der Wirmeleitfihigkeit ist.
Um die Analyse zu ergianzen, wurden Ausdriicke fiir die mittlere kinetische Energie der Partikel und fiir
die Wirmeleitfahigkeit abgeleitet. Beide Ausdriicke in Verbindung mit der Theorie fiir Wiener-Prozesse
ergeben die oben angegebene halbempirische Bezichung.

TEIUIOOBMEH B CJOAX, NCEBJOORIKEHHBIX KANEJABHON
HKUKOCTBIO

AHHOTAIHA—D NCEBIOOMKIIKEHHOM CJI0e CYILECTBYET /BA pOHA TEPeHOCA Tenia: KO-
BeKTUBHHIA Tenj000MeH MeMAY TOYKAMM CJIOA, BLI3BAHHLUi NepeMelINBAHUEM YacTHH M
NOBEPXHOCTHHIN Teryooblen Memay uacTuLamu u cpefoii. (O6a soisnBawT 3QPeRTUBHYIO
TeNIONpOBogHOCTL MaM Juddysuio Temsia B NCEBIOOMIKeHHOM caoe. Jlia Toro, uTofin
paccyuTaTh TEMIEPATYPy B INCeBIOOKIDKeHHOM CJoe, Heolxogumo sHath adderTUBHYI
TeMIIepaTYPONIPOBORUOCTE, JlaHHOe WCCHENOBAaHUE [IMeI0 [KBe LeJ: TeopeTHdecKoe
obbACHeHne TeNI000MeHa M DKCNepUMenTanbHoe onpefesenie sddexTHRHON Temnepa-
TYPONPOBOJHOCTH .

PaGora memnTca Ha [Be OCHOBHLIE YACTH:@ DKCHEDUMEHTAIBHYIO N TeopeTHyecKyw. B
IKCIEPHMEHTAJIbHON HaCTH 3HAuYeHuA d3PeKTHRHON TeMIepaTypoapOBOTHOCTH NOJYUEHH HA
SKCINEPHMEHTAJALHMX YCTAHOBRAX C TMCEBJOOHILKEHHHM cioem. [lonyuendsle 3navenns
0GOGHIRIOTCA TIOAYIMITUPHIECKIM COOTHOIIEHHEM , BHBEEHHBIM B TOPeTHYECKON 4acTH

Keft Psls Re%0.25
v - pres Pro.7s

rae Re*-—uncno PeltHOMbJCA, OTHECEHHOE K [JMAMETPY YACTHULEL M CPeIHEKBAJPATUYHOMK
CKOPOCTY NyJbCAIlMU, ONpe/lesiAeMoil ypaBHeHHeM

d 0,5
(\/u—_) =1 21 (g Z)s 33 (1 _%E)

e Cemroaddunuent HpOHOpuP{OHaHbHOCTM. flpu rpaduyeckom NpeNCTABIEHUHN JHCHEpU-
MCHTAJPHLIX MAHHHIX Halifeno, 4yro € = D320. IxcnepuMenTanbuue gaHube 0fofmanTes ©
MOMOIUBIO STOTO YPABHEHHA CO CTAHJAPTHHIM OTKIOHEHUeM +34 9.

B reopetmueckoM HacTH € HOMOLILIO TEOPUH CTOXACTUYECKMX MPOLECCOR MPOBOUTCS
aHamus  Temico0MeHa, BHBBAHHOTO mNepemMelIMBaHWeM dvactul. Ilokasano, uto npu
onpe)xe.ﬂeﬂﬂmx ynpomeﬂuﬂx npouecc TensrooiMeHa CBOAUTCH K Blmeponcm)my npoueccy.
M3 Teopuu BHHEPOBCKUX NPONECCOB HallieHO, UTO BOOEKTHBRHAH TEMHEPATYPONPOBORHOCTE
TCEBROOKIKEHHOTO CJIOH €CTh (QYHKOUA CpejHell KUHeTHYeCKON DHEPIMM YacTHLL M
woaddunuenta rennoobMena. Ananu3 BaBePIICH BHBOZOM BHpAMEHNIt cpefHell KuHeTHYecKoH
9HePrMM yacTHie M nodPpduumenra TennooGmena. O6a BHIPAXKEHHA COBMECTHO C Teopuelt

BUHEPOBCKUX NPOMECCOB AAI0T TOILYAMITUPUUECKYI0 KOPPENALMIO, IPHBENeHHYI0 BHIe,
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